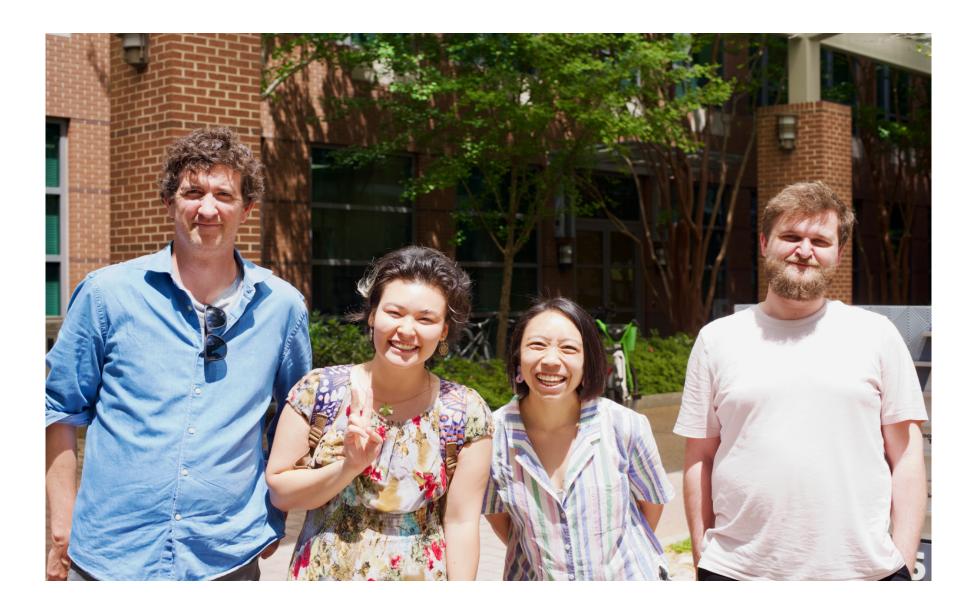
Fast and Slow Mixing of the Kawasaki Dynamics on Bounded-Degree Graphs

Aiya Kuchukova, Marcus Pappik, Will Perkins and Corrine Yap

1

Workshop on the Combinatorial, Algorithmic and Probabilistic Aspects of Partition Functions

Meet the Authors



Ising Model

Ferromagnetic Ising model: a model of spontaneous magnetization

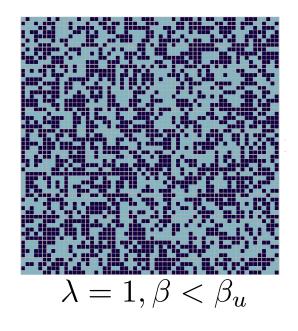
- **u** given graph G, edge interaction $\beta \in \mathbb{R}_{\geq 0}$, external field $\lambda \in \mathbb{R}_{\geq 0}$
- $\blacksquare \text{ state space } \Omega = \{ \sigma : V(G) \rightarrow \{+1, -1\} \}$
- distribution $\mu_{G,\beta,\lambda}(\sigma) \propto \lambda^{|\sigma|^+} e^{\beta m(\sigma)}$ on Ω
- partition function $Z_G(\beta, \lambda) = \sum_{\sigma \in \Omega} \lambda^{|\sigma|^+} e^{\beta m(\sigma)}$

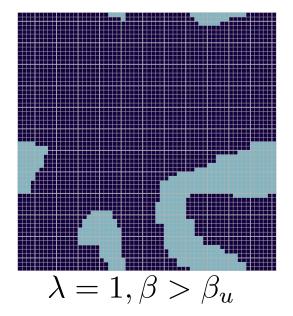
Ising Model

Ferromagnetic Ising model: a model of spontaneous magnetization

- **u** given graph G, edge interaction $\beta \in \mathbb{R}_{\geq 0}$, external field $\lambda \in \mathbb{R}_{\geq 0}$
- $\blacksquare \text{ state space } \Omega = \{ \sigma : V(G) \rightarrow \{+1, -1\} \}$
- distribution $\mu_{G,\beta,\lambda}(\sigma) \propto \lambda^{|\sigma|^+} e^{\beta m(\sigma)}$ on Ω
- partition function $Z_G(\beta, \lambda) = \sum_{\sigma \in \Omega} \lambda^{|\sigma|^+} e^{\beta m(\sigma)}$

Phase Transition: small quantitative change of parameters leads to large qualitative change of the entire system.





Probabilistic: uniqueness vs. non-uniqueness on \mathbb{T}_{Δ} **uniqueness on** \mathbb{T}_{Δ} iff $\beta < \beta_u(\Delta)$ or $\lambda \notin \left[\frac{1}{\lambda_u(\Delta,\beta)}, \lambda_u(\Delta,\beta)\right]$

Probabilistic: uniqueness vs. non-uniqueness on \mathbb{T}_{Δ}

• uniqueness on \mathbb{T}_{Δ} iff $\beta < \beta_u(\Delta)$ or $\lambda \notin \left[\frac{1}{\lambda_u(\Delta,\beta)}, \lambda_u(\Delta,\beta)\right]$

Analytic: absence of roots of $\lambda \mapsto Z_G(\beta, \lambda)$ in complex domains

■ all roots of $\lambda \mapsto Z(\beta, \lambda)$ are on the unit circle [Lee and Yang ('52)] ■ no root near $\mathbb{R}_{\geq 0}$ if $\beta < \beta_u(\Delta)$ [Peters and Regts ('20)]

no tight regime of zero-freeness under pinnings (absolute zero-freeness)

Probabilistic: uniqueness vs. non-uniqueness on \mathbb{T}_{Δ}

• uniqueness on \mathbb{T}_{Δ} iff $\beta < \beta_u(\Delta)$ or $\lambda \notin \left[\frac{1}{\lambda_u(\Delta,\beta)}, \lambda_u(\Delta,\beta)\right]$

Analytic: absence of roots of $\lambda \mapsto Z_G(\beta, \lambda)$ in complex domains

- all roots of $\lambda \mapsto Z(\beta, \lambda)$ are on the unit circle [Lee and Yang ('52)] ■ no root near $\mathbb{R}_{\geq 0}$ if $\beta < \beta_u(\Delta)$ [Peters and Regts ('20)]
- no tight regime of zero-freeness under pinnings (absolute zero-freeness)

Computational: NP-hardness of approximation vs. efficient algorithms ■ FPRAS for all $\beta, \lambda \ge 0!$ [Jerrum and Sinclair ('93)]

Probabilistic: uniqueness vs. non-uniqueness on \mathbb{T}_{Δ}

• uniqueness on \mathbb{T}_{Δ} iff $\beta < \beta_u(\Delta)$ or $\lambda \notin \left[\frac{1}{\lambda_u(\Delta,\beta)}, \lambda_u(\Delta,\beta)\right]$

Analytic: absence of roots of $\lambda \mapsto Z_G(\beta, \lambda)$ in complex domains

- all roots of $\lambda \mapsto Z(\beta, \lambda)$ are on the unit circle [Lee and Yang ('52)] no root near $\mathbb{R}_{\geq 0}$ if $\beta < \beta_u(\Delta)$ [Peters and Regts ('20)]
- no tight regime of zero-freeness under pinnings (absolute zero-freeness)

Computational: NP-hardness of approximation vs. efficient algorithms ■ FPRAS for all $\beta, \lambda \ge 0!$ [Jerrum and Sinclair ('93)]

Dynamical: slow vs. fast convergence of a 'natural' Markov chain to $\mu_{G,\beta,\lambda}$ Mixing of Glauber dynamics:

- rapid mixing for $\beta < \beta_u(\Delta)$ [Mossel and Sly ('13)]
- slow mixing for $\beta > \beta_u(\Delta), \lambda = 1$ [Dembo and Montanari ('10)]
- absolute zero-freeness implies rapid mixing [Chen, Liu and Vigoda ('21)]

Fixed-Magnetization Ising Model

magnetization: for graph G and $\sigma \in \Omega$ define $\eta(\sigma) = \frac{1}{|V(G)|} \sum_{v \in V(G)} \sigma(v)$

fixed-magnetization (or canonical) Ising model:

- **given graph** G, edge interaction $\beta \in \mathbb{R}_{>0}$, magnetization $\eta \in [-1, 1]$
- state space $\Omega_{\eta} = \{ \sigma : V(G) \rightarrow \{+1, -1\} \mid \eta(\sigma) = \eta \}$
- distribution $\hat{\mu}_{G,\beta,\eta}(\sigma) \propto e^{\beta m(\sigma)}$ on Ω_{η}
- partition function $\hat{Z}_G(\beta,\eta) = \sum_{\sigma \in \Omega_\eta} e^{\beta m(\sigma)}$

Fixed-Magnetization Ising Model

magnetization: for graph G and $\sigma \in \Omega$ define $\eta(\sigma) = \frac{1}{|V(G)|} \sum_{v \in V(G)} \sigma(v)$

fixed-magnetization (or canonical) Ising model:

- **u** given graph G, edge interaction $\beta \in \mathbb{R}_{>0}$, magnetization $\eta \in [-1, 1]$
- state space $\Omega_{\eta} = \{ \sigma : V(G) \rightarrow \{+1, -1\} \mid \eta(\sigma) = \eta \}$
- distribution $\hat{\mu}_{G,\beta,\eta}(\sigma) \propto e^{\beta m(\sigma)}$ on Ω_{η}
- **•** partition function $\hat{Z}_G(\beta, \eta) = \sum_{\sigma \in \Omega_\eta} e^{\beta m(\sigma)}$

Slightly different point of view:

For all $\lambda > 0$ it holds that

$$\hat{\mu}_{G,\beta,\eta}(\,\cdot\,) = \mu_{G,\beta,\lambda}(\,\cdot\,\mid\eta(\sigma) = \eta).$$

Fixed-Magnetization Ising: Computational Threshold

Computational Threshold (Carlson-Davies-Kolla-Perkins '22)

There is some $\eta_c(\Delta,\beta) > 0$ such that:

- If $\beta < \beta_u(\Delta)$ or $|\eta| > \eta_c(\Delta, \beta)$, then there is an FPRAS for $\hat{Z}_G(\beta, \eta)$ for $G \in \mathcal{G}_{\Delta}$.
- If $\beta > \beta_u(\Delta)$ and $|\eta| < \eta_c(\Delta, \beta)$, then approximating $\hat{Z}_G(\beta, \eta)$ on \mathcal{G}_Δ is NP-hard.

Fixed-Magnetization Ising: Computational Threshold

Computational Threshold (Carlson-Davies-Kolla-Perkins '22)

There is some $\eta_c(\Delta,\beta) > 0$ such that:

- If $\beta < \beta_u(\Delta)$ or $|\eta| > \eta_c(\Delta, \beta)$, then there is an FPRAS for $\hat{Z}_G(\beta, \eta)$ for $G \in \mathcal{G}_{\Delta}$.
- If $\beta > \beta_u(\Delta)$ and $|\eta| < \eta_c(\Delta, \beta)$, then approximating $\hat{Z}_G(\beta, \eta)$ on \mathcal{G}_Δ is NP-hard.

What is the threshold?

 $\eta_c(\Delta,\beta)$ is the "largest " expected magnetization of the Ising model at $\lambda=1$ on any $G\in\mathcal{G}_\Delta$:

$$\eta_c(\Delta,\beta) \coloneqq \sup_{G \in \mathcal{G}_\Delta} \mathbb{E}_{\sigma \sim \mu_{G,\beta,1}}[\eta(\sigma)]$$

Fixed-Magnetization Ising: Dynamical Threshold

Kawasaki Dynamics: a natural Markov chain for fixed magnet. Ising \blacksquare pick a +1 and -1 vertex uniformly at random

swap their spins with probability proportional to the ratio of weights before and after swapping (Metropolis update)

Fixed-Magnetization Ising: Dynamical Threshold

Kawasaki Dynamics: a natural Markov chain for fixed magnet. Ising \blacksquare pick a +1 and -1 vertex uniformly at random

swap their spins with probability proportional to the ratio of weights before and after swapping (Metropolis update)

Conjecture (Carlson-Davies-Kolla-Perkins '22)

The mixing time of Kawasaki dynamics is polynomial in |V(G)| for all $G \in \mathcal{G}_{\Delta}$ if and only if $\beta < \beta_u(\Delta)$ or $|\eta| > \eta_c(\Delta, \beta)$. That is, **computational** and dynamical threshold coincide on \mathcal{G}_{Δ} .

Fixed-Magnetization Ising: Dynamical Threshold

Kawasaki Dynamics: a natural Markov chain for fixed magnet. Ising \blacksquare pick a +1 and -1 vertex uniformly at random

swap their spins with probability proportional to the ratio of weights before and after swapping (Metropolis update)

Conjecture (Carlson-Davies-Kolla-Perkins '22)

The mixing time of Kawasaki dynamics is polynomial in |V(G)| for all $G \in \mathcal{G}_{\Delta}$ if and only if $\beta < \beta_u(\Delta)$ or $|\eta| > \eta_c(\Delta, \beta)$. That is, **computational** and dynamical threshold coincide on \mathcal{G}_{Δ} .

Support for the conjecture:

- for fixed-size independent sets the dynamical and computational threshold coincide [Jain, Michelen, Pham and Vuong ('23)]
- for **fixed-size matchings** we have rapid mixing whenever we have an approx. counting algorithm [Jain and Mizgerd ('24)]

Main Result: Fixed-Magnetization Ising Model

Theorem 1

There are $\eta_a(\Delta,\beta) \ge \eta_u(\Delta,\beta) > \eta_c(\Delta,\beta)$ such that:

(1) If $\beta < \beta_u(\Delta)$ or $|\eta| > \eta_a(\Delta, \beta)$, the mixing time of Kawasaki dynamics is polynomial in |V(G)| for all $G \in \mathcal{G}_{\Delta}$.

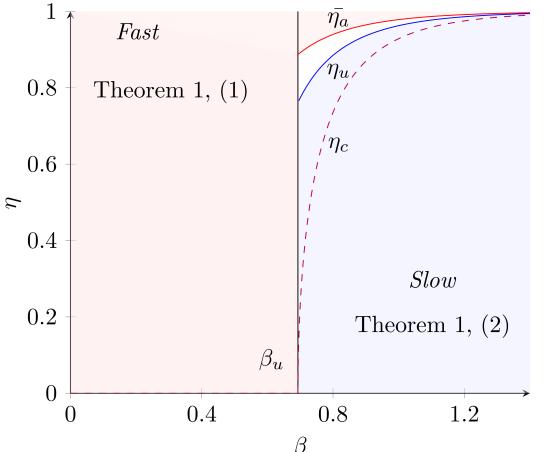
(2) If $\beta > \beta_u(\Delta)$ and $|\eta| < \eta_u(\Delta, \beta)$, the mixing time is **exponential** in $|V(G_n)|$ for some sequence $G_n \in \mathcal{G}_\Delta$, $|V(G_n)| \to \infty$.

Main Result: Fixed-Magnetization Ising Model

Theorem 1

There are $\eta_a(\Delta,\beta) \ge \eta_u(\Delta,\beta) > \eta_c(\Delta,\beta)$ such that:

- (1) If $\beta < \beta_u(\Delta)$ or $|\eta| > \eta_a(\Delta, \beta)$, the mixing time of Kawasaki dynamics is polynomial in |V(G)| for all $G \in \mathcal{G}_{\Delta}$.
- (2) If $\beta > \beta_u(\Delta)$ and $|\eta| < \eta_u(\Delta, \beta)$, the mixing time is **exponential** in $|V(G_n)|$ for some sequence $G_n \in \mathcal{G}_\Delta$, $|V(G_n)| \to \infty$.



 ${\sf Marcus}\ {\sf Pappik}\ \cdot\ {\sf Fast}\ {\sf and}\ {\sf Slow}\ {\sf Mixing}\ {\sf of}\ {\sf the}\ {\sf Kawasaki}\ {\sf Dynamics}\ {\sf on}\ {\sf Bounded}\ {\sf Degree}\ {\sf Graphs}$

Main Result: Thresholds

What are the thresholds?

• $\eta_u(\Delta, \beta)$ is the largest expected magnetization of the Ising model at the uniqueness threshold $\lambda_u(\Delta, \beta)$ on any $G \in \mathcal{G}_{\Delta}$:

$$\eta_u(\Delta,\beta) \coloneqq \sup_{G \in \mathcal{G}_\Delta} \mathbb{E}_{\sigma \sim \mu_{G,\beta,\lambda_u}}[\eta(\sigma)]$$

Main Result: Thresholds

What are the thresholds?

• $\eta_u(\Delta, \beta)$ is the largest expected magnetization of the Ising model at the uniqueness threshold $\lambda_u(\Delta, \beta)$ on any $G \in \mathcal{G}_{\Delta}$:

$$\eta_u(\Delta,\beta) \coloneqq \sup_{G \in \mathcal{G}_\Delta} \mathbb{E}_{\sigma \sim \mu_{G,\beta,\lambda_u}}[\eta(\sigma)]$$

 η_a(Δ, β) is the largest magnetization at the absolute zero-freeness threshold λ_a(Δ, β):

$$\eta_a(\Delta,\beta) \coloneqq \sup_{G \in \mathcal{G}_\Delta} \mathbb{E}_{\sigma \sim \mu_{G,\beta,\lambda_a}}[\eta(\sigma)]$$

Main Result: Thresholds

What are the thresholds?

• $\eta_u(\Delta, \beta)$ is the largest expected magnetization of the Ising model at the uniqueness threshold $\lambda_u(\Delta, \beta)$ on any $G \in \mathcal{G}_{\Delta}$:

$$\eta_u(\Delta,\beta) \coloneqq \sup_{G \in \mathcal{G}_\Delta} \mathbb{E}_{\sigma \sim \mu_{G,\beta,\lambda_u}}[\eta(\sigma)]$$

 η_a(Δ, β) is the largest magnetization at the absolute zero-freeness threshold λ_a(Δ, β):

$$\eta_a(\Delta,\beta) \coloneqq \sup_{G \in \mathcal{G}_\Delta} \mathbb{E}_{\sigma \sim \mu_{G,\beta,\lambda_a}}[\eta(\sigma)]$$

Absolute zero-freeness:

For all $G \in \mathcal{G}_{\Delta}$, $S \subset V$ and $\tau : S \to \{-1, +1\}$

$$\lambda \mapsto Z_G^{\tau}(\beta, \lambda) \coloneqq \sum_{\substack{\sigma \in \Omega:\\ \sigma_{|S} = \tau}} \lambda^{|\sigma|^+} \mathrm{e}^{\beta m(\sigma)}$$

is zero-free in a neighborhood of every compact $D \subset (\lambda_a(\Delta, \beta), \infty)$.

 ${\sf Marcus}\ {\sf Pappik}\ \cdot\ {\sf Fast}\ {\sf and}\ {\sf Slow}\ {\sf Mixing}\ {\sf of}\ {\sf the}\ {\sf Kawasaki}\ {\sf Dynamics}\ {\sf on}\ {\sf Bounded-Degree}\ {\sf Graphs}$

Part I: Rapid Mixing

Rapid Mixing from $\ell_\infty\text{-Independence}$

ℓ_{∞} -independence:

We say a distribution π on $\Omega = \{\sigma : V \to \{-1, +1\}\}$ is $C - \ell_{\infty}$ -independent if for all $u \in V$ with $\pi(u \mapsto +1) > 0$ it holds that

$$\sum_{v \in V} \left| \pi(v \mapsto +1 \mid u \mapsto +1) - \pi(v \mapsto +1) \right| \le C.$$

Rapid Mixing from $\ell_\infty\text{-Independence}$

ℓ_{∞} -independence:

We say a distribution π on $\Omega = \{\sigma : V \to \{-1, +1\}\}$ is $C - \ell_{\infty}$ -independent if for all $u \in V$ with $\pi(u \mapsto +1) > 0$ it holds that

$$\sum_{v \in V} \left| \pi(v \mapsto +1 \mid u \mapsto +1) - \pi(v \mapsto +1) \right| \le C.$$

ℓ_∞ -independence \Rightarrow rapid mixing :

If the fixed magnet. Ising model at magnetization $\eta < 0$ is $O(1)-\ell_{\infty}$ -independent under every +1-pinning, then the Kawasaki dynamics mix rapidly for that η .

Rapid Mixing from $\ell_\infty\text{-Independence}$

ℓ_{∞} -independence:

We say a distribution π on $\Omega = \{\sigma : V \to \{-1, +1\}\}$ is $C - \ell_{\infty}$ -independent if for all $u \in V$ with $\pi(u \mapsto +1) > 0$ it holds that

$$\sum_{v \in V} \left| \pi(v \mapsto +1 \mid u \mapsto +1) - \pi(v \mapsto +1) \right| \le C.$$

$\boldsymbol{\ell_\infty}\text{-independence}$ \Rightarrow rapid mixing :

If the fixed magnet. Ising model at magnetization $\eta < 0$ is $O(1)-\ell_{\infty}$ -independent under every +1-pinning, then the Kawasaki dynamics mix rapidly for that η .

Idea: relate ℓ_{∞} -independence fixed magnet. Ising and general Ising (adapting a framework by Jain, Michelen, Pham and Vuong ('23))

Establishing $\ell_\infty\text{-Independence}$

Note: For all $\lambda > 0$, pinnings τ and $u, v \in V$ we have

$$\hat{\mu}_{\eta}^{\tau}(v \mapsto +1) = \mu_{\lambda}^{\tau}(v \mapsto +1) \cdot \frac{\mu_{\lambda}^{\tau}(\eta \mid v \mapsto +1)}{\mu_{\lambda}^{\tau}(\eta)}$$
$$\hat{\mu}_{\eta}^{\tau}(v \mapsto +1 \mid u \mapsto +1) = \mu_{\lambda}^{\tau}(v \mapsto +1 \mid u \mapsto +1) \cdot \frac{\mu_{\lambda}^{\tau}(\eta \mid u \mapsto +1, v \mapsto +1)}{\mu_{\lambda}^{\tau}(\eta)}$$

Establishing ℓ_{∞} -Independence

Note: For all $\lambda > 0$, pinnings τ and $u, v \in V$ we have

$$\hat{\mu}_{\eta}^{\tau}(v \mapsto +1) = \mu_{\lambda}^{\tau}(v \mapsto +1) \cdot \frac{\mu_{\lambda}^{\tau}(\eta \mid v \mapsto +1)}{\mu_{\lambda}^{\tau}(\eta)}$$
$$\hat{\mu}_{\eta}^{\tau}(v \mapsto +1 \mid u \mapsto +1) = \mu_{\lambda}^{\tau}(v \mapsto +1 \mid u \mapsto +1) \cdot \frac{\mu_{\lambda}^{\tau}(\eta \mid u \mapsto +1, v \mapsto +1)}{\mu_{\lambda}^{\tau}(\eta)}$$

Observation:

To show $O(1)-\ell_{\infty}$ -independence for the fixed magnet. Ising under any pinning τ , it suffices to find some $0 < \lambda$ such that

- \blacksquare μ_{λ}^{τ} satisfies O(1)- ℓ_{∞} -independence and
- \blacksquare μ_{λ}^{τ} has a **stable magnetization**: for all $u, v \in V$ it holds that

$$\frac{\mu_{\lambda}^{\tau}(\eta \mid v \mapsto +1)}{\mu_{\lambda}^{\tau}(\eta)}, \frac{\mu_{\lambda}^{\tau}(\eta \mid u \mapsto +1, v \mapsto +1)}{\mu_{\lambda}^{\tau}(\eta)} = 1 + O(1/|V|).$$

Establishing ℓ_{∞} -Independence

Note: For all $\lambda > 0$, pinnings τ and $u, v \in V$ we have

$$\hat{\mu}_{\eta}^{\tau}(v \mapsto +1) = \mu_{\lambda}^{\tau}(v \mapsto +1) \cdot \frac{\mu_{\lambda}^{\tau}(\eta \mid v \mapsto +1)}{\mu_{\lambda}^{\tau}(\eta)}$$
$$\hat{\mu}_{\eta}^{\tau}(v \mapsto +1 \mid u \mapsto +1) = \mu_{\lambda}^{\tau}(v \mapsto +1 \mid u \mapsto +1) \cdot \frac{\mu_{\lambda}^{\tau}(\eta \mid u \mapsto +1, v \mapsto +1)}{\mu_{\lambda}^{\tau}(\eta)}$$

Observation:

To show $O(1)-\ell_{\infty}$ -independence for the fixed magnet. Ising under any pinning τ , it suffices to find some $0 < \lambda$ such that

- \blacksquare μ_{λ}^{τ} satisfies O(1)- ℓ_{∞} -independence and
- μ_{λ}^{τ} has a **stable magnetization**: for all $u, v \in V$ it holds that

$$\frac{\mu_{\lambda}^{\tau}(\eta \mid v \mapsto +1)}{\mu_{\lambda}^{\tau}(\eta)}, \frac{\mu_{\lambda}^{\tau}(\eta \mid u \mapsto +1, v \mapsto +1)}{\mu_{\lambda}^{\tau}(\eta)} = 1 + O(1/|V|).$$

If $\eta < -\eta_a$, then there is some $\lambda < 1/\lambda_a$ with $\mathbb{E}_{\sigma \sim \mu_{\lambda}^{\tau}}[\eta(\sigma)] = \eta$ that satisfies both conditions.

$$\begin{split} &\ell_{\infty}\text{-Independence and Stability from Zero-Freeness} \\ &\ell_{\infty}\text{-independence of Ising:} \\ &\text{Absolute zero-freeness implies } \ell_{\infty}\text{-independence [Chen, Liu and Vigoda '21].} \\ &\sum_{v \in V} \left| \mu_{\lambda}^{\tau}(v \mapsto +1 \mid u \mapsto +1) - \mu_{\lambda}^{\tau}(v \mapsto +1) \right| = \lambda \frac{\mathsf{d}}{\mathsf{d}\varepsilon} \log \frac{Z^{\tau, u \mapsto +1}(\lambda + \varepsilon)}{Z^{\tau}(\lambda + \varepsilon)} \Big|_{\varepsilon = 0} \end{split}$$

$$\begin{split} &\ell_{\infty}\text{-Independence and Stability from Zero-Freeness} \\ &\ell_{\infty}\text{-independence of Ising:} \\ &\text{Absolute zero-freeness implies } \ell_{\infty}\text{-independence [Chen, Liu and Vigoda '21].} \\ &\sum_{v \in V} \left| \mu_{\lambda}^{\tau}(v \mapsto +1 \mid u \mapsto +1) - \mu_{\lambda}^{\tau}(v \mapsto +1) \right| = \lambda \frac{\mathsf{d}}{\mathsf{d}\varepsilon} \log \frac{Z^{\tau, u \mapsto +1}(\lambda + \varepsilon)}{Z^{\tau}(\lambda + \varepsilon)} \Big|_{\varepsilon = 0} \end{split}$$

Stablility of magnetization for Ising:

• try to understand the distribution of $X \coloneqq |\sigma|^+$ near $\mathbb{E}[X]$

ℓ_{∞} -Independence and Stability from Zero-Freeness ℓ_{∞} -independence of Ising: Absolute zero-freeness implies ℓ_{∞} -independence [Chen, Liu and Vigoda '21]. $\sum_{i=1}^{n} \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{$

$$\sum_{v \in V} \left| \mu_{\lambda}^{\tau}(v \mapsto +1 \mid u \mapsto +1) - \mu_{\lambda}^{\tau}(v \mapsto +1) \right| = \lambda \frac{\mathsf{d}}{\mathsf{d}\varepsilon} \log \left| \frac{Z^{\tau,w,\tau+1}(\lambda+\varepsilon)}{Z^{\tau}(\lambda+\varepsilon)} \right|_{\varepsilon=0}$$

Stablility of magnetization for Ising:

• try to understand the distribution of $X \coloneqq |\sigma|^+$ near $\mathbb{E}[X]$

Edgeworth expansion for X:

Using the inverse Fourier transformation, we can write the probability mass function of \boldsymbol{X} as

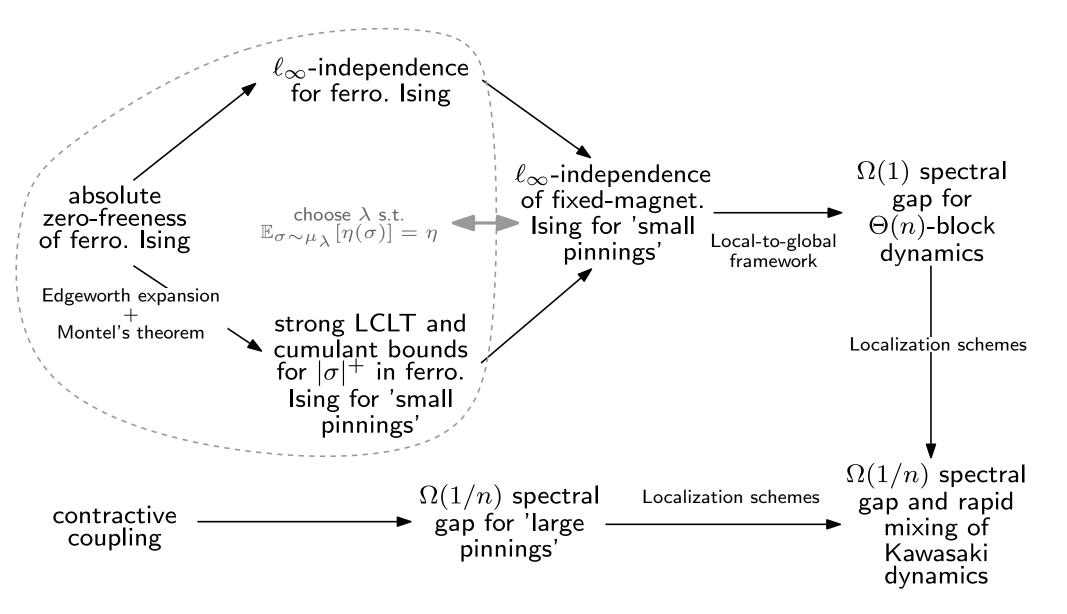
$$f_X(x) = \frac{1}{2\pi} \int e^{-itx} \exp\left(\sum_{m=0}^{\infty} \kappa_m \frac{(it)^m}{m!}\right) dt,$$

where κ_m is the m^{th} cumulant, given by

$$\kappa_m \coloneqq \frac{\mathsf{d}^m}{\mathsf{d}t^m} \log \mathbb{E}\left[\mathsf{e}^{itX}\right]\Big|_{t=0} = \frac{\mathsf{d}^m}{\mathsf{d}t^m} \log \frac{Z^{\tau}(\mathsf{e}^{it}\lambda)}{Z^{\tau}(\lambda)}\Big|_{t=0}$$

 ${\sf Marcus}\ {\sf Pappik}\ \cdot\ {\sf Fast}\ {\sf and}\ {\sf Slow}\ {\sf Mixing}\ {\sf of}\ {\sf the}\ {\sf Kawasaki}\ {\sf Dynamics}\ {\sf on}\ {\sf Bounded-Degree}\ {\sf Graphs}$

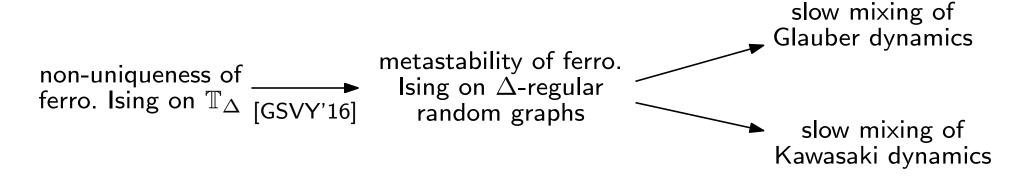
Proof Overview: Fast Mixing of Kawasaki Dynamics



Part II: Slow Mixing

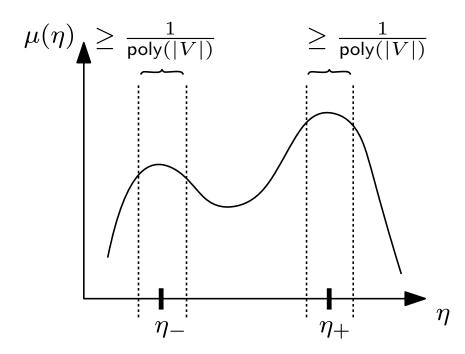
Proof Overview: Slow Mixing non-uniqueness of ferro. Ising on \mathbb{T}_{Δ} $\overbrace{[GSVY'16]}^{\text{metastability of ferro.}}$ is metastability of ferro. Ising on Δ -regular random graphs is low mixing of Kawasaki dynamics

Proof Overview: Slow Mixing

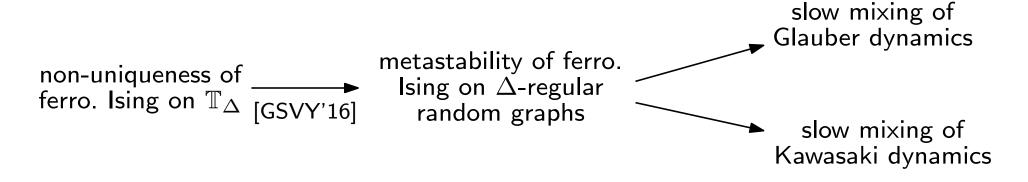


Glauber dynamics:

For $G \sim U(\mathcal{G}_{\Delta})$ we have w.h.p.

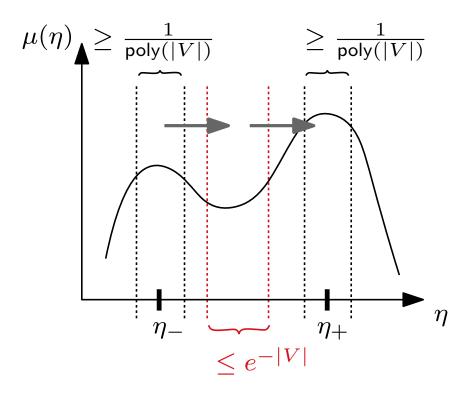


Proof Overview: Slow Mixing



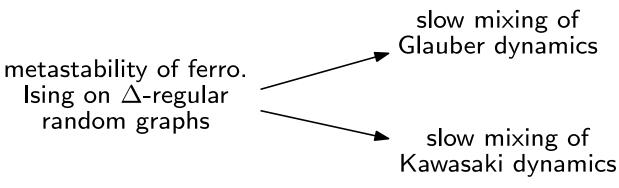
Glauber dynamics:

For $G \sim U(\mathcal{G}_{\Delta})$ we have w.h.p.



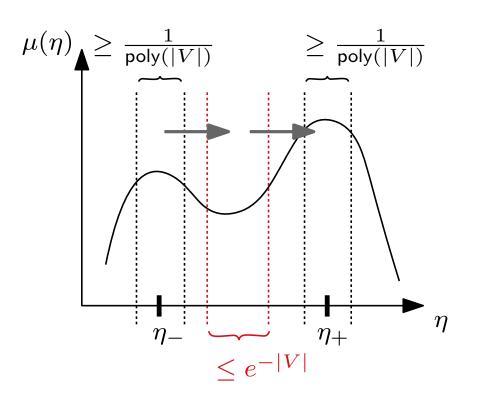
Proof Overview: Slow Mixing

non-uniqueness of ferro. Ising on \mathbb{T}_{Δ} [GSVY'16]



Glauber dynamics:

For $G \sim U(\mathcal{G}_{\Delta})$ we have w.h.p.

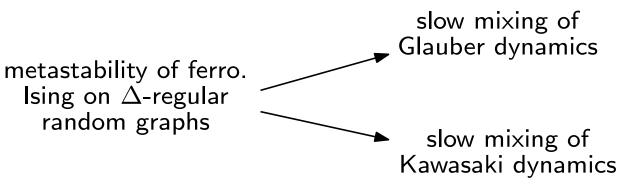


Kawasaki dynamics:

For $H = m \times G$ for large m

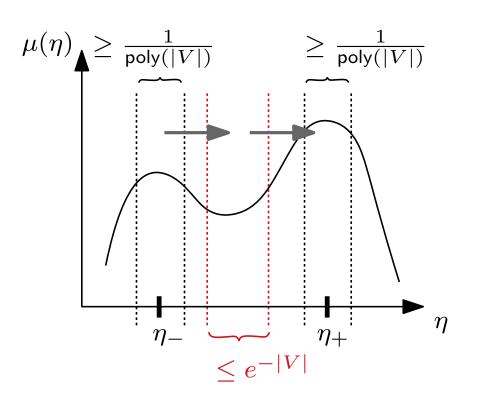
Proof Overview: Slow Mixing

non-uniqueness of ferro. Ising on \mathbb{T}_{Δ} [GSVY'16]



Glauber dynamics:

For $G \sim U(\mathcal{G}_{\Delta})$ we have w.h.p.



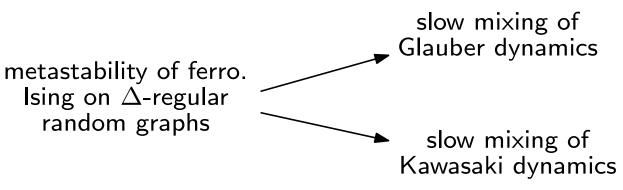
Kawasaki dynamics:

For $H = m \times G$ for large m

$$\begin{pmatrix} \eta_+ \\ \eta_+ \\ \eta_- \end{pmatrix} \bigg\} \ge \frac{1}{\operatorname{poly}(|V|)}$$

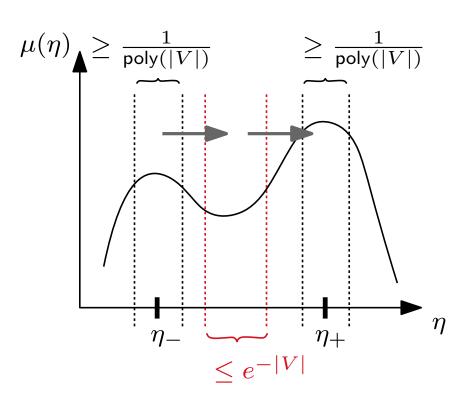
Proof Overview: Slow Mixing

non-uniqueness of ferro. Ising on \mathbb{T}_{Δ} [GSVY'16]



Glauber dynamics:

For $G \sim U(\mathcal{G}_{\Delta})$ we have w.h.p.



Kawasaki dynamics:

For $H = m \times G$ for large m

$$\begin{pmatrix} \eta_+ \\ \eta_+ \\ \end{pmatrix} \quad \begin{pmatrix} \eta_- \\ \eta_- \\ \end{pmatrix} \ge \frac{1}{\operatorname{poly}(|V|)}$$

 ${\sf Marcus}\ {\sf Pappik}\ \cdot\ {\sf Fast}\ {\sf and}\ {\sf Slow}\ {\sf Mixing}\ {\sf of}\ {\sf the}\ {\sf Kawasaki}\ {\sf Dynamics}\ {\sf on}\ {\sf Bounded-Degree}\ {\sf Graphs}$

 η_+

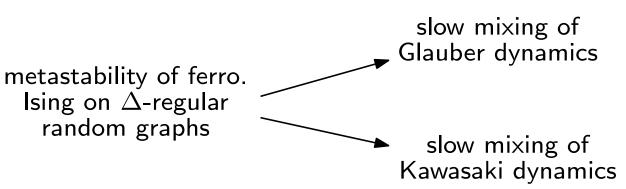
 η_{-}

 η_{+}

 $\geq \frac{1}{\mathsf{poly}(|V|)}$

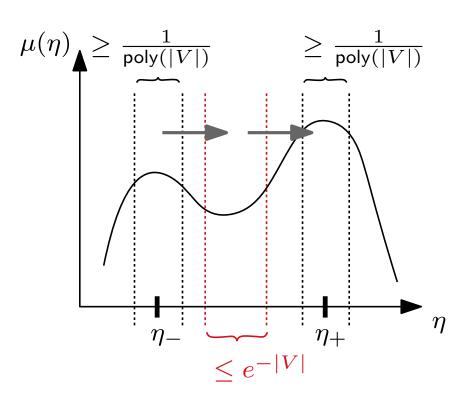
Proof Overview: Slow Mixing

non-uniqueness of ferro. Ising on \mathbb{T}_{Δ} [GSVY'16]



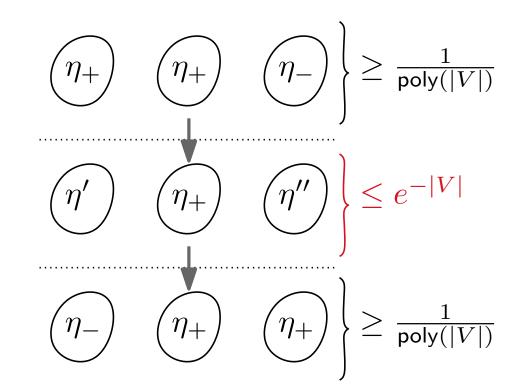
Glauber dynamics:

For $G \sim U(\mathcal{G}_{\Delta})$ we have w.h.p.



Kawasaki dynamics:

For $H = m \times G$ for large m



Marcus Pappik · Fast and Slow Mixing of the Kawasaki Dynamics on Bounded-Degree Graphs

Final: Open Questions, Conjectures and Future Work

Conjecture

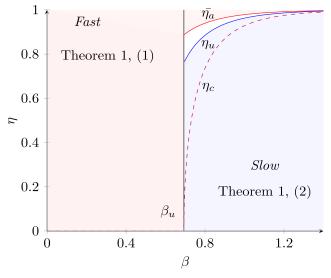
If $\beta < \beta_u(\Delta)$ or $\eta \notin [-\eta_a, \eta_a]$ then Kawasaki dynamics have mixing time $O(|V(G)| \cdot \log |V(G)|)$ for all $G \in \mathcal{G}_{\Delta}$.

Conjecture

If $\beta < \beta_u(\Delta)$ or $\eta \notin [-\eta_a, \eta_a]$ then Kawasaki dynamics have mixing time $O(|V(G)| \cdot \log |V(G)|)$ for all $G \in \mathcal{G}_{\Delta}$.

Question

Is $\lambda_a(\Delta,\beta) = \lambda_u(\Delta,\beta)$? (if yes then $\eta_a(\Delta,\beta) = \eta_u(\Delta,\beta)$)



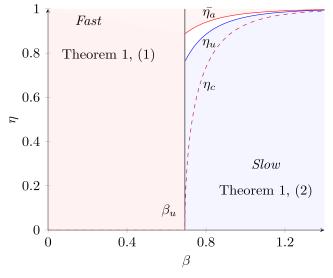
Conjecture

If $\beta < \beta_u(\Delta)$ or $\eta \notin [-\eta_a, \eta_a]$ then Kawasaki dynamics have mixing time $O(|V(G)| \cdot \log |V(G)|)$ for all $G \in \mathcal{G}_{\Delta}$.

Question

Is $\lambda_a(\Delta,\beta) = \lambda_u(\Delta,\beta)$? (if yes then $\eta_a(\Delta,\beta) = \eta_u(\Delta,\beta)$)

Unfortunately, the answer is **no**!



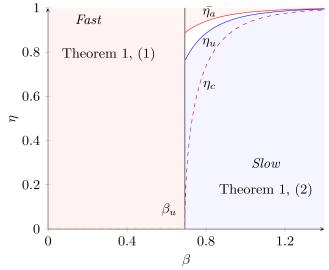
Conjecture

If $\beta < \beta_u(\Delta)$ or $\eta \notin [-\eta_a, \eta_a]$ then Kawasaki dynamics have mixing time $O(|V(G)| \cdot \log |V(G)|)$ for all $G \in \mathcal{G}_{\Delta}$.

Question

Is $\lambda_a(\Delta,\beta) = \lambda_u(\Delta,\beta)$? (if yes then $\eta_a(\Delta,\beta) = \eta_u(\Delta,\beta)$)

Unfortunately, the answer is **no**!



Better Question

Are Kawasaki dynamics rapidly mixing for all $\eta \notin [-\eta_u, \eta_u]$?

Are Kawasaki dynamics rapidly mixing for all $\eta \notin [-\eta_u, \eta_u]$?

More Precise Question

Fix G, $\beta > \beta_u$, $0 < \lambda_0 < 1/\lambda_u$, and, for every "not too big" $S \subset V$, let λ_S be such that

$$\mathbb{E}_{\sigma \sim \mu_{\lambda_S}^{S \mapsto +1}} [\eta(\sigma)] = \mathbb{E}_{\tau \sim \mu_{\lambda_0}} [\eta(\tau)].$$

Does it hold that $\lambda \mapsto Z^{S \mapsto +1}(\lambda)$ is zero-free in a neighborhood of λ_S ?

Are Kawasaki dynamics rapidly mixing for all $\eta \notin [-\eta_u, \eta_u]$?

More Precise Question

Fix G, $\beta > \beta_u$, $0 < \lambda_0 < 1/\lambda_u$, and, for every "not too big" $S \subset V$, let λ_S be such that

$$\mathbb{E}_{\sigma \sim \mu_{\lambda_S}^{S \mapsto +1}} [\eta(\sigma)] = \mathbb{E}_{\tau \sim \mu_{\lambda_0}} [\eta(\tau)].$$

Does it hold that $\lambda \mapsto Z^{S \mapsto +1}(\lambda)$ is zero-free in a neighborhood of λ_S ?

Intuitively, while pinning S to +1 is similar to increasing the external field of adjacent vertices, we need to make λ_S smaller to preserve the magnetization, which might globally counteract that effect.

Are Kawasaki dynamics rapidly mixing for all $\eta \notin [-\eta_u, \eta_u]$?

More Precise Question

Fix G, $\beta > \beta_u$, $0 < \lambda_0 < 1/\lambda_u$, and, for every "not too big" $S \subset V$, let λ_S be such that

$$\mathbb{E}_{\sigma \sim \mu_{\lambda_S}^{S \mapsto +1}} [\eta(\sigma)] = \mathbb{E}_{\tau \sim \mu_{\lambda_0}} [\eta(\tau)].$$

Does it hold that $\lambda \mapsto Z^{S \mapsto +1}(\lambda)$ is zero-free in a neighborhood of λ_S ?

Intuitively, while pinning S to +1 is similar to increasing the external field of adjacent vertices, we need to make λ_S smaller to preserve the magnetization, which might globally counteract that effect.

Thank you!

Backup

Side Result: Ferromagnetic Ising Model

Reminder:

Slow mixing of Glauber dynamics is only known for $\beta > \beta_u(\Delta)$ and $\lambda = 1$.

Side Result: Ferromagnetic Ising Model

Reminder:

Slow mixing of Glauber dynamics is only known for $\beta > \beta_u(\Delta)$ and $\lambda = 1$.

Theorem 2

For all $\beta > \beta_u(\Delta)$ and $\lambda \in \left(\frac{1}{\lambda_u(\Delta,\beta)}, \lambda_u(\Delta,\beta)\right)$, there is a sequence $G_n \in \mathcal{G}_{\Delta}$ with $|V(G_n)| \to \infty$ such that the mixing time of Glauber dynamics is **exponential** in $|V(G_n)|$.

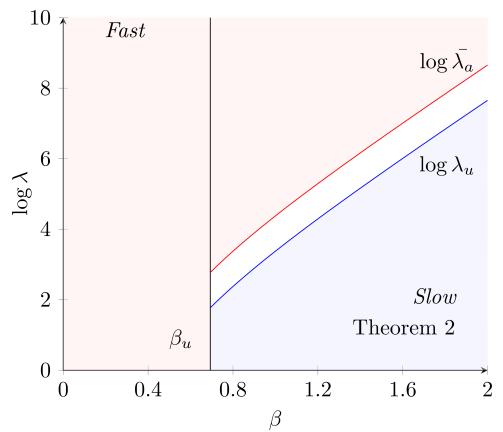
Side Result: Ferromagnetic Ising Model

Reminder:

Slow mixing of Glauber dynamics is only known for $\beta > \beta_u(\Delta)$ and $\lambda = 1$.

Theorem 2

For all $\beta > \beta_u(\Delta)$ and $\lambda \in \left(\frac{1}{\lambda_u(\Delta,\beta)}, \lambda_u(\Delta,\beta)\right)$, there is a sequence $G_n \in \mathcal{G}_{\Delta}$ with $|V(G_n)| \to \infty$ such that the mixing time of Glauber dynamics is **exponential** in $|V(G_n)|$.



Marcus Pappik · Fast and Slow Mixing of the Kawasaki Dynamics on Bounded-Degree Graphs