The number of random 2-SAT solutions is asymptotically log-normal

Noela Müller Eindhoven University of Technology

Based on joint work with Arnab Chatterjee, Amin Coja-Oghlan, Connor Riddlesden, Maurice Rolvien, Pavel Zakharov and Haodong Zhu

> Workshop on Partition Functions, CWI 28th March 2025

Boolean satisfiability problem

The Boolean satisfiability problem from logic and computer science asks the following:

Given a propositional formula Φ , determine whether its variables can be consistently replaced by TRUE or FALSE such that the overall formula evaluates to TRUE.

Restrict to k-CNF formulas $\Phi = \Phi_{n,m}$: Given n variables $\{x_1, \dots, x_n\}$, assume that

$$\Phi_{n,m} = (\ell_{1,1} \vee \ldots \vee \ell_{1,k}) \wedge (\ell_{2,1} \vee \ldots \vee \ell_{2,k}) \wedge \ldots \wedge (\ell_{m,1} \vee \ldots \vee \ell_{m,k}),$$

is a conjunction of m clauses of the form $a_i = \ell_{i,1} \vee ... \vee \ell_{i,k}$, where $\ell_{i,j} \in \{x_1, \neg x_1, x_2, \neg x_2, ..., x_n, \neg x_n\}$.

Restrict to k-CNF formulas $\Phi = \Phi_{n,m}$:

Given n variables $\{x_1, ..., x_n\}$, assume that

$$\Phi_{n,m} = (\ell_{1,1} \vee \ldots \vee \ell_{1,k}) \wedge (\ell_{2,1} \vee \ldots \vee \ell_{2,k}) \wedge \ldots \wedge (\ell_{m,1} \vee \ldots \vee \ell_{m,k}),$$

is a conjunction of m clauses of the form $a_i = \ell_{i,1} \lor ... \lor \ell_{i,k}$, where $\ell_{i,j} \in \{x_1, \neg x_1, x_2, \neg x_2, ..., x_n, \neg x_n\}$.

 $\{x_1, \neg x_1, x_2, \neg x_2, \dots, x_n, \neg x_n\}$ is the set of **literals**.

Restrict to k-CNF formulas $\Phi = \Phi_{n,m}$: Given n variables $\{x_1, ..., x_n\}$, assume that

$$\Phi_{n,m} = (\ell_{1,1} \vee \ldots \vee \ell_{1,k}) \wedge (\ell_{2,1} \vee \ldots \vee \ell_{2,k}) \wedge \ldots \wedge (\ell_{m,1} \vee \ldots \vee \ell_{m,k}),$$

is a conjunction of m clauses of the form $a_i = \ell_{i,1} \vee \ldots \vee \ell_{i,k}$, where $\ell_{i,j} \in \{x_1, \neg x_1, x_2, \neg x_2, \ldots, x_n, \neg x_n\}$.

 $\{x_1, \neg x_1, x_2, \neg x_2, \dots, x_n, \neg x_n\}$ is the set of **literals**.

- Open Does there exist a satisfying variable assignment?
- If a satisfying assignment exists, how many are there?

Restrict to k-CNF formulas $\Phi = \Phi_{n,m}$: Given n variables $\{x_1, ..., x_n\}$, assume that

$$\Phi_{n,m} = (\ell_{1,1} \vee \ldots \vee \ell_{1,k}) \wedge (\ell_{2,1} \vee \ldots \vee \ell_{2,k}) \wedge \ldots \wedge (\ell_{m,1} \vee \ldots \vee \ell_{m,k}),$$

is a conjunction of m clauses of the form $a_i = \ell_{i,1} \vee ... \vee \ell_{i,k}$, where $\ell_{i,j} \in \{x_1, \neg x_1, x_2, \neg x_2, ..., x_n, \neg x_n\}$.

 $\{x_1, \neg x_1, x_2, \neg x_2, \dots, x_n, \neg x_n\}$ is the set of **literals**.

- ① Does there exist a satisfying variable assignment? NP-complete for $k \ge 3$ and in P for k = 2.
- ② If a satisfying assignment exists, how many are there? #P-complete for $k \ge 2$.

Random satisfiability

Early observation:

Many 'industrial' instances of Boolean formulas can be efficiently tackled by existing SAT-solvers, despite (conjectured) theoretical hardness.

Random satisfiability

Early observation:

Many 'industrial' instances of Boolean formulas can be efficiently tackled by existing SAT-solvers, despite (conjectured) theoretical hardness.

Selman, Mitchell and Levesque (1996):

Random instances of 3-SAT with certain clause-to-variable ratios appear to be very difficult to solve.

Random satisfiability

Early observation:

Many 'industrial' instances of Boolean formulas can be efficiently tackled by existing SAT-solvers, despite (conjectured) theoretical hardness.

Selman, Mitchell and Levesque (1996):

Random instances of 3-SAT with certain clause-to-variable ratios appear to be very difficult to solve.

- What are characteristic features of random formulas?
- How are these related to the performance of algorithms?

Random 2-SAT

Denote by $\Phi = \Phi_{n,m}$ a random 2-CNF on n Boolean variables $x_1, ..., x_n$ with m clauses,

drawn independently and uniformly from all $4\binom{n}{2}$ possible 2-clauses:

$$\mathbf{\Phi} = (\boldsymbol{\ell}_{1,1} \vee \boldsymbol{\ell}_{1,2}) \wedge \ldots \wedge (\boldsymbol{\ell}_{m,1} \vee \boldsymbol{\ell}_{m,2}),$$

where
$$\ell_{1,1}, \ell_{1,2}, \dots, \ell_{m,2} \in \{x_1, \neg x_1, x_2, \neg x_2, \dots, x_n, \neg x_n\}.$$

Random 2-SAT

Denote by $\Phi = \Phi_{n,m}$ a random 2-CNF on n Boolean variables x_1, \ldots, x_n with m clauses,

drawn independently and uniformly from all $4\binom{n}{2}$ possible 2-clauses:

$$\mathbf{\Phi} = (\boldsymbol{\ell}_{1,1} \vee \boldsymbol{\ell}_{1,2}) \wedge \ldots \wedge (\boldsymbol{\ell}_{m,1} \vee \boldsymbol{\ell}_{m,2}),$$

where
$$\ell_{1,1}, \ell_{1,2}, \dots, \ell_{m,2} \in \{x_1, \neg x_1, x_2, \neg x_2, \dots, x_n, \neg x_n\}.$$

Suppose that $m \sim dn/2$ for a fixed real d > 0.

5 / 52

Random 2-SAT

Denote by $\Phi = \Phi_{n,m}$ a random 2-CNF on n Boolean variables $x_1, ..., x_n$ with m clauses,

drawn independently and uniformly from all $4\binom{n}{2}$ possible 2-clauses:

$$\boldsymbol{\Phi} = (\boldsymbol{\ell}_{1,1} \vee \boldsymbol{\ell}_{1,2}) \wedge \cdots \wedge (\boldsymbol{\ell}_{m,1} \vee \boldsymbol{\ell}_{m,2}),$$

where
$$\ell_{1,1}, \ell_{1,2}, \dots, \ell_{m,2} \in \{x_1, \neg x_1, x_2, \neg x_2, \dots, x_n, \neg x_n\}.$$

Suppose that $m \sim d n/2$ for a fixed real d > 0.

 \implies The parameter d represents the average number of clauses in which any variable x_i appears.

Satisfiability threshold

 $m = \Theta(n)$ is the 'right' clause-to-variable ratio to observe a (sharp) transition from satisfiability to unsatisfiability:

Satisfiability threshold

 $m = \Theta(n)$ is the 'right' clause-to-variable ratio to observe a (sharp) transition from satisfiability to unsatisfiability:

Theorem (Chvátal & Reed (1992), Goerdt (1992), Fernandez de la Vega (1992))

Let $\Phi = \Phi_{n,m}$ be a random 2-CNF on n Boolean variables with $m \sim dn/2$ for a fixed real d > 0. Then for any $\varepsilon > 0$:

- If $d \le 2 \varepsilon$, w.h.p. Φ is satisfiable.
- If $d \ge 2 + \varepsilon$, w.h.p. Φ is not satisfiable.

Proof spirit

Approach:

Translate satisfiability question into graph-theoretical question and apply techniques from the theory of random (di)graphs.

Proof spirit

Approach:

Translate satisfiability question into graph-theoretical question and apply techniques from the theory of random (di)graphs.

More specifically:

Both satisfiability and unsatisfiability of a formula are related to the (non-)existence of cycles with a certain structure.

Then apply first and second moment method on cycle counts.

Let $\Phi = \Phi_{n,m}$ be a random k-CNF on n Boolean variables x_1, \ldots, x_n with m clauses, drawn independently and uniformly from all $2^k \binom{n}{k}$ possible k-clauses.

Let $\Phi = \Phi_{n,m}$ be a **random** k-**CNF** on n Boolean variables x_1, \ldots, x_n with m clauses, drawn independently and uniformly from all $2^k \binom{n}{k}$ possible k-clauses.

Suppose that $m \sim dn/k$ for a fixed real d > 0.

Let $\Phi = \Phi_{n,m}$ be a random k-CNF

on n Boolean variables x_1, \ldots, x_n with m clauses, drawn independently and uniformly from all $2^k \binom{n}{k}$ possible k-clauses.

Suppose that $m \sim dn/k$ for a fixed real d > 0.

Theorem (Friedgut (1999))

For each $k \ge 3$ there is a function $d_k(n)$ bounded above and below by constants so that for every $\varepsilon > 0$ the following hold:

- If $d \le (1 \varepsilon) \frac{d_k(n)}{d_k(n)}$, w.h.p. Φ is satisfiable.
- If $d \ge (1 + \varepsilon) \frac{d_k(n)}{d_k(n)}$, w.h.p. Φ is not satisfiable.

Let $\Phi = \Phi_{n,m}$ be a random k-CNF

on n Boolean variables x_1, \ldots, x_n with m clauses, drawn independently and uniformly from all $2^k \binom{n}{k}$ possible k-clauses.

Suppose that $m \sim dn/k$ for a fixed real d > 0.

Theorem (Friedgut (1999))

For each $k \ge 3$ there is a function $d_k(n)$ bounded above and below by constants so that for every $\varepsilon > 0$ the following hold:

- If $d \le (1 \varepsilon) \frac{d_k(n)}{d_k(n)}$, w.h.p. Φ is satisfiable.
- If $d \ge (1 + \varepsilon) d_k(n)$, w.h.p. Φ is not satisfiable.

Does $(d_k(n))_n$ converge?

Random k-SAT as a spin glass model

In the early 2000's, physicists observed that random k-SAT (and, more generally, random constraint satisfaction problems) can be studied as examples of **diluted spin glasses**.

Random k-SAT as a spin glass model

In the early 2000's, physicists observed that random k-SAT (and, more generally, random constraint satisfaction problems) can be studied as examples of **diluted spin glasses**.

Based on the **cavity method**, Mézard, Parisi & Zecchina and Mertens, Mézard & Zecchina (early 2000's) put forward an explicit characterisation of the conjectured limit d_k .

Proof of the satisfiability threshold conjecture for large k

Theorem (Ding, Sly, Sun (2015))

Let $\Phi = \Phi_{n,m}$ be a random k-CNF on n Boolean variables with $m \sim dn/k$ for a fixed real d > 0. Moreover, assume that $k \geq k_0$ for an absolute constant k_0 . Then there exists d_k that matches the physics predictions such that for all $\varepsilon > 0$:

- If $d \le d_k \varepsilon$, w.h.p. Φ is satisfiable.
- If $d \ge d_k + \varepsilon$, w.h.p. Φ is not satisfiable.

Counting solutions

Let's return to the second initial question:

If a satisfying assignments exist, how many of them are there typically?

Counting solutions

Let's return to the second initial question:

If a satisfying assignments exist, how many of them are there typically?

The number of solutions is related to structural properties of the solution space geometry.

— Connection to the computational nature of finding or sampling solutions.

Counting solutions

Let's return to the second initial question:

If a satisfying assignments exist, how many of them are there typically?

The number of solutions is related to structural properties of the solution space geometry.

— Connection to the computational nature of finding or sampling solutions.

For random 2-SAT:

Monasson & Zecchina (1996) put forward a statistical physics based prediction about the leading exponential order of the number of solutions.

11 / 52

Denote by $Z(\Phi)$ the number of satisfying assignments of Φ .

Denote by $Z(\Phi)$ the number of satisfying assignments of Φ .

Theorem (Achlioptas, Coja-Oghlan, Hahn-Klimroth, Lee, M., Penschuk, Zhou (2021))

Fix 0 < d < 2. There exists a probability distribution π_d on (0,1) such that for i.i.d. samples $(\pmb{\mu}_{\pi_d,i})_{i\geq 1}$ from π_d and $\pmb{d}^-, \pmb{d}^+ \sim \operatorname{Po}(d/2)$, all independent, we have

$$\frac{1}{n}\log Z(\mathbf{\Phi}) \stackrel{\mathbb{P}}{\longrightarrow} \mathbb{E}\left[\log\left(\prod_{i=1}^{\mathbf{d}^{-}}\boldsymbol{\mu}_{\pi_{d},i} + \prod_{i=1}^{\mathbf{d}^{+}}\boldsymbol{\mu}_{\pi_{d},\mathbf{d}^{-}+i}\right) - \frac{d}{2}\log\left(1 - \boldsymbol{\mu}_{\pi_{d},1}\boldsymbol{\mu}_{\pi_{d},2}\right)\right]$$

$$=: \phi(d).$$

4□ > 4□ > 4 = > 4 = > = 90

Related work

- Boufkhad and Dubois (1999) obtain best prior lower bound on $\frac{1}{n} \log Z(\Phi)$.
- Franz & Leone (2003), Panchenko & Talagrand (2004) obtain an asymptotically tight upper bound on $\frac{1}{n} \log Z(\Phi)$ via the interpolation method.
- The analysis of a general approximation algorithm by Montanari and Shah (2007) implies analogous results (correlation decay, performance of BP, limit of the log-partition function) for a 'soft' version of random 2-SAT for d < 1.16.
- Abbe and Montanari (2015): $\frac{1}{n} \log Z(\Phi)$ converges in probability to a deterministic limit $\phi(d)$ for Lebesgue-almost all $d \in (0,2)$. Their approach does not give information on the value of $\phi(d)$.

High-level proof idea

The expected value

Consider the 'simpler' task of determining the asymptotics of

$$\frac{1}{n}\mathbb{E}[\log(Z(\mathbf{\Phi}_n)\vee 1)].$$

The expected value

Consider the 'simpler' task of determining the asymptotics of

$$\frac{1}{n}\mathbb{E}[\log(Z(\mathbf{\Phi}_n)\vee 1)].$$

One approach to this problem:

Aizenman-Sims-Starr scheme from the mathematics of spin glasses:

Compute the asymptotic mean of a random variable on a formula of size n by estimating the change of that mean upon going to a formula of size n+1.

$$\begin{split} \frac{1}{n}\mathbb{E}[\log(Z(\mathbf{\Phi}_n)\vee 1)] &= \frac{1}{n}\sum_{N=2}^{n-1}\left(\mathbb{E}[\log(Z(\mathbf{\Phi}_{N+1})\vee 1)] - \mathbb{E}[\log(Z(\mathbf{\Phi}_N)\vee 1)]\right) \\ &\quad + \frac{1}{n}\mathbb{E}[\log(Z(\mathbf{\Phi}_2)\vee 1)]. \end{split}$$

The expected value

Proposition

We have

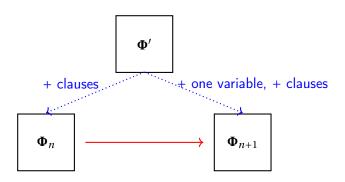
$$\begin{split} &\lim_{n \to \infty} \mathbb{E}[\log(Z(\boldsymbol{\Phi}_{n+1}) \vee 1)] - \mathbb{E}[\log(Z(\boldsymbol{\Phi}_n) \vee 1)] \\ &= \mathbb{E}\left[\log\left(\prod_{i=1}^{d^-} \boldsymbol{\mu}_{\pi_d,i} + \prod_{i=1}^{d^+} \boldsymbol{\mu}_{\pi_d,i+d^-}\right) - \frac{d}{2}\log\left(1 - \boldsymbol{\mu}_{\pi_d,1} \boldsymbol{\mu}_{\pi_d,2}\right)\right]. \end{split}$$

$$= \lim_{n \to \infty} \frac{1}{n} \mathbb{E}[\log(Z(\mathbf{\Phi}_n) \vee 1)]$$

by Stolz-Cesàro Theorem.

Coupling

The difference is calculated by coupling the formulas of size n and n+1 such that the latter is obtained from the former by a small expected number of local changes.



Goal:

Get a handle on the expected change of the effects of

- 1 adding a (small) number of clauses and
- ② adding a variable and a (small) number of clauses.

Goal:

Get a handle on the expected change of the effects of

- adding a (small) number of clauses and
- adding a variable and a (small) number of clauses.

Both can be expressed in terms of the joint marginals of a bounded number of variables with respect to the uniform distribution over satisfying assignments.

From digraphs to marginals

Denote by $S(\Phi)$ the set of all satisfying assignments of Φ .

From digraphs to marginals

Denote by $S(\Phi)$ the set of all satisfying assignments of Φ . Assuming that $S(\Phi) \neq \emptyset$, let

$$\mu_{\mathbf{\Phi}}(\sigma) = \frac{\mathbb{1}\{\sigma \in S(\mathbf{\Phi})\}}{Z(\mathbf{\Phi})}, \qquad \sigma \in \{\pm 1\}^{\{x_1, \dots, x_n\}},$$

denote the uniform distribution on $S(\mathbf{\Phi})$, where $Z(\mathbf{\Phi}) = |S(\mathbf{\Phi})|$.

(Encoding 'true' by +1 and 'false' by -1.)

From digraphs to marginals

Denote by $S(\Phi)$ the set of all satisfying assignments of Φ . Assuming that $S(\Phi) \neq \emptyset$, let

$$\mu_{\mathbf{\Phi}}(\sigma) = \frac{\mathbb{1}\{\sigma \in S(\mathbf{\Phi})\}}{Z(\mathbf{\Phi})}, \qquad \sigma \in \{\pm 1\}^{\{x_1, \dots, x_n\}},$$

denote the uniform distribution on $S(\mathbf{\Phi})$, where $Z(\mathbf{\Phi}) = |S(\mathbf{\Phi})|$.

(Encoding 'true' by
$$+1$$
 and 'false' by -1 .)

Samples from μ_{Φ} are denoted by the boldface notation σ .

Noela Müller

Back to the expectation

For simplicity, let $\Phi + a$ denote the formula that is obtained from Φ by adding a uniformly random clause

$$\boldsymbol{a} = \boldsymbol{s}_1 \boldsymbol{x}_i \vee \boldsymbol{s}_2 \boldsymbol{x}_j$$
.

Assume that Φ is satisfiable.

Back to the expectation

For simplicity, let $\Phi + a$ denote the formula that is obtained from Φ by adding a uniformly random clause

$$\boldsymbol{a} = \boldsymbol{s}_1 \boldsymbol{x}_i \vee \boldsymbol{s}_2 \boldsymbol{x}_j$$
.

Assume that Φ is satisfiable.

Then

$$\log(Z(\Phi + \boldsymbol{a})) - \log(Z(\Phi)) = \log\left(\frac{Z(\Phi + \boldsymbol{a})}{Z(\Phi)}\right)$$

and

$$\frac{Z(\Phi + \boldsymbol{a})}{Z(\Phi)} = \sum_{\boldsymbol{\sigma}: \boldsymbol{\sigma} \models \Phi} \frac{\mathbb{I}\{\boldsymbol{\sigma} \models \boldsymbol{a}\}}{Z(\Phi)} = \mu_{\Phi}(\boldsymbol{\sigma} \models \boldsymbol{a})$$
$$= 1 - \mu_{\Phi}(\boldsymbol{\sigma}_{i} \neq \boldsymbol{s}_{1}, \boldsymbol{\sigma}_{j} \neq \boldsymbol{s}_{2}).$$

Having expressed $\mathbb{E}[\log(Z(\Phi) \vee 1)]$ as a sum of local changes, to analyse μ_{Φ} , we next perform the following steps:

- **①** Analyse (joint) marginals on the local limit of Φ :
 - → Multitype Galton-Watson tree for formulas.

Having expressed $\mathbb{E}[\log(Z(\Phi) \vee 1)]$ as a sum of local changes, to analyse μ_{Φ} , we next perform the following steps:

- **①** Analyse (joint) marginals on the local limit of Φ :
 - → Multitype Galton-Watson tree for formulas.
 - Establish decorrelation properties for random 2-SAT on the local limit tree:
 - → Gibbs uniqueness.

Having expressed $\mathbb{E}[\log(Z(\Phi) \vee 1)]$ as a sum of local changes, to analyse μ_{Φ} , we next perform the following steps:

- **①** Analyse (joint) marginals on the local limit of Φ :
 - → Multitype Galton-Watson tree for formulas.
 - Establish decorrelation properties for random 2-SAT on the local limit tree:
 - → Gibbs uniqueness.
 - Characterize the root marginals for random 2-SAT on the local limit tree via stochastic fixed point equation:
 - → analysis of belief propagation algorithm for marginals.

Having expressed $\mathbb{E}[\log(Z(\Phi) \vee 1)]$ as a sum of local changes, to analyse μ_{Φ} , we next perform the following steps:

- **1** Analyse (joint) marginals on the local limit of Φ :
 - → Multitype Galton-Watson tree for formulas.
 - Establish decorrelation properties for random 2-SAT on the local limit tree:
 - → Gibbs uniqueness.
 - Characterize the root marginals for random 2-SAT on the local limit tree via stochastic fixed point equation:
 - → analysis of belief propagation algorithm for marginals.
- **②** Show that $\log(Z(\Phi) \vee 1)/n$ concentrates about its mean.

 $\mathscr{P}(0,1)$: set of Borel probability measures on (0,1). Define $\mathrm{BP}_d:\mathscr{P}(0,1)\to\mathscr{P}(0,1)$ as follows: Let $d^+,d^-\sim\mathrm{Po}(d/2)$ and

 $(\boldsymbol{\mu}_{\pi,i})_{i\geq 1}$ be a sequence of i.i.d. samples from $\pi\in\mathcal{P}(0,1)$ (all independent).

$$\mathrm{BP}_d(\pi) = \mathcal{L}\left(\frac{\prod_{i=1}^{d^-} \boldsymbol{\mu}_{\pi,i}}{\prod_{i=1}^{d^-} \boldsymbol{\mu}_{\pi,i} + \prod_{i=1}^{d^+} \boldsymbol{\mu}_{\pi,i+d^-}}\right).$$

 $\mathcal{P}(0,1)$: set of Borel probability measures on (0,1).

Define $\mathrm{BP}_d: \mathscr{P}(0,1) \to \mathscr{P}(0,1)$ as follows: Let $d^+, d^- \sim \mathrm{Po}(d/2)$ and $(\mu_{\pi,i})_{i \geq 1}$ be a sequence of i.i.d. samples from $\pi \in \mathscr{P}(0,1)$ (all independent). Then

$$\mathrm{BP}_d(\pi) = \mathcal{L}\left(\frac{\prod_{i=1}^{d^-} \boldsymbol{\mu}_{\pi,i}}{\prod_{i=1}^{d^-} \boldsymbol{\mu}_{\pi,i} + \prod_{i=1}^{d^+} \boldsymbol{\mu}_{\pi,i+d^-}}\right).$$

Theorem (Achlioptas, Coja-Oghlan, Hahn-Klimroth, Lee, M., Penschuk, Zhou (2021))

For any 0 < d < 2 the limit $\pi_d = \lim_{\ell \to \infty} \mathrm{BP}^\ell(\delta_{\frac{1}{2}})$ exists and

$$\frac{1}{n}\log Z(\mathbf{\Phi}) \stackrel{\mathbb{P}}{\longrightarrow} \mathbb{E}\left[\log\left(\prod_{i=1}^{\boldsymbol{d}^{-}}\boldsymbol{\mu}_{\pi_{d},i} + \prod_{i=1}^{\boldsymbol{d}^{+}}\boldsymbol{\mu}_{\pi_{d},\boldsymbol{d}^{-}+i}\right) - \frac{d}{2}\log\left(1 - \boldsymbol{\mu}_{\pi_{d},1}\boldsymbol{\mu}_{\pi_{d},2}\right)\right].$$

Proposition

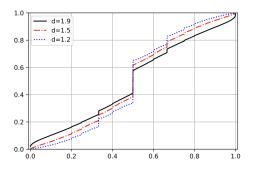
For any 0 < d < 2, the random probability measure

$$\pi_{\mathbf{\Phi}} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\mu_{\mathbf{\Phi}}(\boldsymbol{\sigma}_{x_i} = 1)}$$

converges to π_d weakly in probability.

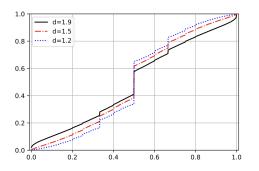
 π_d corresponds to the asymptotic probability that a uniformly chosen variable within a uniformly random solution is set to 'true'.

How bad can the marginal structure get?



An approximation to the c.d.f. corresponding to π_d , for $d \in \{1.2, 1.5, 1.9\}$.

How bad can the marginal structure get?



An approximation to the c.d.f. corresponding to π_d , for $d \in \{1.2, 1.5, 1.9\}$.

'Complex' marginal structure arises from *inhomogeneity* among variable marginals: Variables are highly sensitive to imbalances in their local neighbourhood.

Let

$$\mathbb{A}_{\mathrm{p.p.}} := \{ x \in [0,1] : \pi_d(\{x\}) > 0 \}$$

denote the pure point support of π_d .

Let

$$\mathbb{A}_{p,p} := \{x \in [0,1] : \pi_d(\{x\}) > 0\}$$

denote the pure point support of π_d .

Theorem (M., Neininger, Zhu (2025+))

For any $d \in (0,2)$, the pure point support of π_d is

$$\mathbb{A}_{\mathrm{p.p.}} = \mathbb{Q} \cap (0,1).$$

Let

$$\mathbb{A}_{\text{p.p.}} := \{x \in [0,1] : \pi_d(\{x\}) > 0\}$$

denote the pure point support of π_d .

Theorem (M., Neininger, Zhu (2025+))

For any $d \in (0,2)$, the pure point support of π_d is

$$\mathbb{A}_{p.p.} = \mathbb{Q} \cap (0,1).$$

Moreover:

- For $d \in (0,1]$, π_d is a discrete measure;
- For $d \in (1,2)$, π_d has a non-trivial continuous part $\pi_{d,c}$ with $supp(\pi_{d,c}) = [0,1]$.

Figure: Ralph Neininger

Figure: Haodong Zhu

• $\mathbb{Q} \cap (0,1)$ is a not too surprising subset of the pure point support: A uniformly chosen variable has asymptotically non-negligible probability to come from a *small component* (e.g. isolated vertex), such that its marginal still corresponds to a *proportion*.

- $\mathbb{Q} \cap (0,1)$ is a not too surprising subset of the pure point support: A uniformly chosen variable has asymptotically non-negligible probability to come from a *small component* (e.g. isolated vertex), such that its marginal still corresponds to a *proportion*.
- Less immediate: Irrespective of d, the pure point support of π_d contains *all* rational numbers in (0,1), and a *non-trivial continuous* part $\pi_{d,c}$ exists for $d \in (1,2)$.

Fluctuations

Having a 'law-of-large-numbers-type' result, can we derive the precise limiting distribution of a rescaled version of $\log Z(\Phi)$?

Fluctuations

Having a 'law-of-large-numbers-type' result, can we derive the precise limiting distribution of a rescaled version of $\log Z(\Phi)$?

In many previously studied random constraint satisfaction problems, the logarithm of the number of solutions **superconcentrates** for constraint densities up to the so-called condensation threshold (a phase transition that shortly precedes the satisfiability threshold):

It has only bounded fluctuations.

Example: Random k-SAT with regular literal degrees

Let $\tilde{\mathbf{\Phi}} = \tilde{\mathbf{\Phi}}_{n,m}$ be a random k-CNF

on n Boolean variables $x_1, ..., x_n$ with m = 2dn/k clauses of length k, where $k \mid 2dn$, defined as follows:

For each variable x_i , choose exactly d "positive" and d "negative" literal slots out of the km available literal slots (without replacement).

Example: Random k-SAT with regular literal degrees

Theorem (Coja-Oghlan, Wormald 2016)

There exists a constant k_0 such that for all $k \ge k_0$ and d > 0 such that $2d/k \le 2k \ln 2 - k \ln 2/2 - 4$ the following is true. Let $q = q(k) \in (0,1)$ be the unique solution to the equation

$$2q = 1 - (1 - q)^k.$$

Then there exists a random variable W with finite second moment such that as $n \to \infty$,

$$Z \cdot \frac{\left(4q(1-q)\right)^{dn}\sqrt{2+2(k-1)q-k}}{2^n\left(2q\right)^m} \stackrel{d}{\longrightarrow} W.$$

More superconcentration

Superconcentration also occurs in

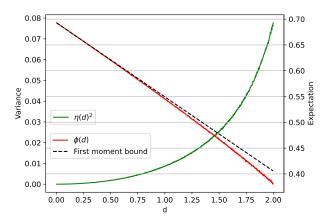
- random k-XORSAT up to the satisfiability threshold [Ayre, Coja-Oghlan, Gao, M. (2020)].
- random graph q-coloring up to the condensation threshold [Coja-Oghlan, Jaafari, Efthymiou, Kang, Kapetanopoulos (2018)].
- random k-NAESAT up to the condensation threshold [Coja-Oghlan, Kapetanopoulos, M. (2020)].
- symmetric perceptron, but with slightly different limiting distribution (log-normal with bounded variance) [Abbe, Li, Sly (2021)].

Fluctuations in random 2-SAT

Theorem (Chatterjee, Coja-Oghlan, M., Riddlesden, Rolvien, Zakharov, Zhu (2025+))

For any 0 < d < 2, there exists $\eta(d)^2 \in (0, \infty)$ such that

$$\frac{\log Z(\mathbf{\Phi}) - \mathbb{E}[\log Z(\mathbf{\Phi}) \mid Z(\mathbf{\Phi}) > 0]}{\sqrt{m}} \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, \eta(d)^2\right).$$



Red: The function $d \mapsto \phi(d)$.

Black: First moment bound $d \mapsto (1-d)\log 2 + \frac{d}{2}\log 3$. Green: Approximation of the variance $\eta(d)^2$.

35 / 52

High-level proof idea

The variance

Consider the 'simpler' task of determining the asymptotics of the 'variance' of Φ .

For now, assume that $\hat{\Phi}$ is some satisfiable modification of Φ :

$$Var(\log Z(\hat{\mathbf{\Phi}})) = \mathbb{E}\left[\log Z(\hat{\mathbf{\Phi}})^2\right] - \mathbb{E}\left[\log Z(\hat{\mathbf{\Phi}})\right]^2.$$

The variance

Consider the 'simpler' task of determining the asymptotics of the 'variance' of Φ .

For now, assume that $\hat{\Phi}$ is some satisfiable modification of Φ :

$$\operatorname{Var}(\log Z(\hat{\mathbf{\Phi}})) = \mathbb{E}\left[\log Z(\hat{\mathbf{\Phi}})^{2}\right] - \mathbb{E}\left[\log Z(\hat{\mathbf{\Phi}})\right]^{2}.$$

In particular, for two independent copies $\hat{\pmb{\Phi}}_1, \hat{\pmb{\Phi}}_2$ of $\hat{\pmb{\Phi}},$

$$\operatorname{Var}(\log Z(\hat{\mathbf{\Phi}})) = \mathbb{E}\left[\log Z(\hat{\mathbf{\Phi}}_1)^2\right] - \mathbb{E}\left[\log Z(\hat{\mathbf{\Phi}}_1)\log Z(\hat{\mathbf{\Phi}}_2)\right].$$

The variance

Consider the 'simpler' task of determining the asymptotics of the 'variance' of Φ .

For now, assume that $\hat{\Phi}$ is some satisfiable modification of Φ :

$$\operatorname{Var}(\log Z(\hat{\mathbf{\Phi}})) = \mathbb{E}\left[\log Z(\hat{\mathbf{\Phi}})^{2}\right] - \mathbb{E}\left[\log Z(\hat{\mathbf{\Phi}})\right]^{2}.$$

In particular, for two independent copies $\hat{\Phi}_1, \hat{\Phi}_2$ of $\hat{\Phi}$,

$$\operatorname{Var}(\log Z(\hat{\mathbf{\Phi}})) = \mathbb{E}\left[\log Z(\hat{\mathbf{\Phi}}_1)^2\right] - \mathbb{E}\left[\log Z(\hat{\mathbf{\Phi}}_1)\log Z(\hat{\mathbf{\Phi}}_2)\right].$$

→ Key idea (morally also employed in spin glass theory; see e.g. Chen, Dey, Panchenko (2017)):

Set up a family of correlated random formulas.

◆ロ > ← (型 > ← (型) を (型) を (型) の (の)

Setting up correlated formulas

For integers $M, M' \ge 0$ we construct a correlated pair $(\Phi_1(M, M'), \Phi_2(M, M'))$ of formulas on the same variable set $V_n = \{x_1, \dots, x_n\}$ as follows:

Setting up correlated formulas

For integers $M, M' \ge 0$ we construct a correlated pair $(\Phi_1(M, M'), \Phi_2(M, M'))$ of formulas on the same variable set $V_n = \{x_1, \dots, x_n\}$ as follows:

Let $(\boldsymbol{a}_i)_{i\geq 1}$, $(\boldsymbol{a}_i')_{i\geq 1}$, $(\boldsymbol{a}_i'')_{i\geq 1}$ be sequences of mutually independent uniformly random clauses on V_n , and set

$$\Phi_1(M, M') = \mathbf{a}_1 \wedge \cdots \wedge \mathbf{a}_M \wedge \mathbf{a}'_1 \wedge \cdots \wedge \mathbf{a}'_{M'},
\Phi_2(M, M') = \mathbf{a}_1 \wedge \cdots \wedge \mathbf{a}_M \wedge \mathbf{a}''_1 \wedge \cdots \wedge \mathbf{a}''_{M'}.$$

 $\Phi_1(M,M')$ and $\Phi_2(M,M')$ share clauses a_1,\ldots,a_M . Additionally, each contains another M' independent clauses.

Setting up correlated formulas

For integers $M, M' \ge 0$ we construct a correlated pair $(\Phi_1(M, M'), \Phi_2(M, M'))$ of formulas on the same variable set $V_n = \{x_1, \dots, x_n\}$ as follows:

Let $(a_i)_{i\geq 1}$, $(a_i')_{i\geq 1}$, $(a_i'')_{i\geq 1}$ be sequences of mutually independent uniformly random clauses on V_n , and set

$$\Phi_1(M, M') = \mathbf{a}_1 \wedge \cdots \wedge \mathbf{a}_M \wedge \mathbf{a}'_1 \wedge \cdots \wedge \mathbf{a}'_{M'},
\Phi_2(M, M') = \mathbf{a}_1 \wedge \cdots \wedge \mathbf{a}_M \wedge \mathbf{a}''_1 \wedge \cdots \wedge \mathbf{a}''_{M'}.$$

 $\Phi_1(M,M')$ and $\Phi_2(M,M')$ share clauses $\boldsymbol{a}_1,...,\boldsymbol{a}_M.$ Additionally, each contains another M' independent clauses.

In particular, $\Phi_1(m,0) = \Phi_2(m,0)$, while $\Phi_1(0,m)$, $\Phi_2(0,m)$ are independent.

Telescoping sum

Interpolating between the extreme cases, we can write a telescoping sum for the variance of $\hat{\Phi}\colon$

$$\begin{split} \log Z(\hat{\Phi}_{1}(m,0)) \cdot \log Z(\hat{\Phi}_{2}(m,0)) - \log Z(\hat{\Phi}_{1}(0,m)) \cdot \log Z(\hat{\Phi}_{2}(0,m)) \\ &= \sum_{M=1}^{m} \log Z(\hat{\Phi}_{1}(M,m-M)) \cdot \log Z(\hat{\Phi}_{2}(M,m-M)) \\ &- \log Z(\hat{\Phi}_{1}(M-1,m-M+1)) \cdot \log Z(\hat{\Phi}_{2}(M-1,m-M+1)). \end{split}$$

Noela Müller Random 2-SAT 39 / 52

Telescoping sum

Interpolating between the extreme cases, we can write a telescoping sum for the variance of $\hat{\Phi}\colon$

$$\begin{split} \log Z(\hat{\Phi}_{1}(m,0)) \cdot \log Z(\hat{\Phi}_{2}(m,0)) - \log Z(\hat{\Phi}_{1}(0,m)) \cdot \log Z(\hat{\Phi}_{2}(0,m)) \\ &= \sum_{M=1}^{m} \log Z(\hat{\Phi}_{1}(M,m-M)) \cdot \log Z(\hat{\Phi}_{2}(M,m-M)) \\ &- \log Z(\hat{\Phi}_{1}(M-1,m-M+1)) \cdot \log Z(\hat{\Phi}_{2}(M-1,m-M+1)). \end{split}$$

Each summand on the r.h.s. corresponds to a local change of swapping a shared clause for a pair of independent clauses.

Noela Müller Random 2-SAT 39 / 52

Taking expectations

Problem:

We are actually interested in

$$\begin{split} \log Z(\boldsymbol{\Phi}_1(m,0)) \cdot \log Z(\boldsymbol{\Phi}_2(m,0)) - \log Z(\boldsymbol{\Phi}_1(0,m)) \cdot \log Z(\boldsymbol{\Phi}_2(0,m)) \\ &= \sum_{M=1}^m \log Z(\boldsymbol{\Phi}_1(M,m-M)) \cdot \log Z(\boldsymbol{\Phi}_2(M,m-M)) \\ &\quad - \log Z(\boldsymbol{\Phi}_1(M-1,m-M+1)) \cdot \log Z(\boldsymbol{\Phi}_2(M-1,m-M+1)), \end{split}$$

but each $\Phi_h(M, m-M)$ has a non-zero probability of being unsatisfiable.

Noela Müller Random 2-SAT 40 / 52

Taking expectations

Problem:

We are actually interested in

$$\begin{split} \log Z(\boldsymbol{\Phi}_1(m,0)) \cdot \log Z(\boldsymbol{\Phi}_2(m,0)) - \log Z(\boldsymbol{\Phi}_1(0,m)) \cdot \log Z(\boldsymbol{\Phi}_2(0,m)) \\ &= \sum_{M=1}^m \log Z(\boldsymbol{\Phi}_1(M,m-M)) \cdot \log Z(\boldsymbol{\Phi}_2(M,m-M)) \\ &- \log Z(\boldsymbol{\Phi}_1(M-1,m-M+1)) \cdot \log Z(\boldsymbol{\Phi}_2(M-1,m-M+1)), \end{split}$$

but each $\Phi_h(M, m-M)$ has a non-zero probability of being unsatisfiable.

Solution:

Turn each $\Phi_h(M,m-M)$ by a satisfiable version $\hat{\Phi}_h(M,m-M)$ s.t. typically, $\log Z(\Phi_h(M,m-M)), \log Z(\hat{\Phi}_h(M,m-M))$ are close. The construction of $\hat{\Phi}$ is based on the Unit Clause Propagation algorithm.

Local changes in correlated formula pairs

Having expressed the variance of $\log Z(\hat{\Phi})$ as a sum of local changes, to analyse these, we next perform the following steps:

- Derive the local limit of pairs of correlated formulas:
 - → Multitype Galton-Watson tree for formula pairs.

Noela Müller Random 2-SAT 41 / 52

Local changes in correlated formula pairs

Having expressed the variance of $\log Z(\hat{\Phi})$ as a sum of local changes, to analyse these, we next perform the following steps:

- Operive the local limit of pairs of correlated formulas:
 - → Multitype Galton-Watson tree for formula pairs.
- Establish decorrelation properties for random 2-SAT on the local limit tree:
 - → Gibbs uniqueness for formula pairs.

Noela Müller Random 2-SAT 41 / 52

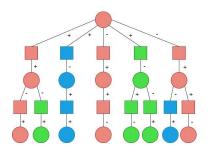
Local changes in correlated formula pairs

Having expressed the variance of $\log Z(\hat{\Phi})$ as a sum of local changes, to analyse these, we next perform the following steps:

- Derive the local limit of pairs of correlated formulas:
 - → Multitype Galton-Watson tree for formula pairs.
- Establish decorrelation properties for random 2-SAT on the local limit tree:
 - → Gibbs uniqueness for formula pairs.
- Oharacterize the root marginals for random 2-SAT on the local limit tree via stochastic fixed point equation:
 - → analysis of belief propagation algorithm for marginals in formula pairs.

Noela Müller Random 2-SAT 41 / 52

Multitype Galton-Watson tree



Visualization of the local limit of a pair of correlated random 2-SAT formulas.

Noela Müller Random 2-SAT 42 / 52

Let $\mathscr{P}(\mathbb{R}^2)$ be the set of all (Borel) probability measures on \mathbb{R}^2 . For 0 < d < 2 and $0 \le t \le 1$ we define an operator

$$\log \mathrm{BP}_{d,t}^{\otimes} : \mathscr{P}\left(\mathbb{R}^{2}\right) \to \mathscr{P}\left(\mathbb{R}^{2}\right), \qquad \qquad \rho \mapsto \hat{\rho} = \log \mathrm{BP}_{d,t}^{\otimes}(\rho),$$
 as follows.

Noela Müller Random 2-SAT 43 / 52

Let

$$(\xi_{\rho,i})_{i\geq 1}, (\xi'_{\rho,i})_{i\geq 1}, (\xi''_{\rho,i})_{i\geq 1}, \quad \xi_{\rho,i} = \begin{pmatrix} \xi_{\rho,i,1} \\ \xi_{\rho,i,2} \end{pmatrix}, \xi'_{\rho,i} = \begin{pmatrix} \xi'_{\rho,i,1} \\ \xi'_{\rho,i,2} \end{pmatrix}, \xi''_{\rho,i} = \begin{pmatrix} \xi''_{\rho,i,1} \\ \xi''_{\rho,i,2} \end{pmatrix}$$

be random vectors with distribution ρ , let $\boldsymbol{d} \stackrel{\text{dist}}{=} \operatorname{Po}(td)$, $\boldsymbol{d}', \boldsymbol{d}'' \stackrel{\text{dist}}{=} \operatorname{Po}((1-t)d)$ and let $\boldsymbol{s}_i, \boldsymbol{s}_i', \boldsymbol{s}_i'', \boldsymbol{r}_i, \boldsymbol{r}_i', \boldsymbol{r}_i''$ for $i \ge 1$ be uniformly random on $\{\pm 1\}$, all mutually independent.

Noela Müller Random 2-SAT 44 / 52

Let

$$(\pmb{\xi}_{\rho,i})_{i\geq 1},\,(\pmb{\xi}'_{\rho,i})_{i\geq 1},\,(\pmb{\xi}''_{\rho,i})_{i\geq 1},\quad \pmb{\xi}_{\rho,i} = \begin{pmatrix} \pmb{\xi}_{\rho,i,1} \\ \pmb{\xi}_{\rho,i,2} \end{pmatrix},\, \pmb{\xi}'_{\rho,i} = \begin{pmatrix} \pmb{\xi}'_{\rho,i,1} \\ \pmb{\xi}'_{\rho,i,2} \end{pmatrix},\, \pmb{\xi}''_{\rho,i} = \begin{pmatrix} \pmb{\xi}''_{\rho,i,1} \\ \pmb{\xi}''_{\rho,i,2} \end{pmatrix}$$

be random vectors with distribution ρ , let $\mathbf{d} \stackrel{\text{dist}}{=} \operatorname{Po}(td)$, $\mathbf{d}', \mathbf{d}'' \stackrel{\text{dist}}{=} \operatorname{Po}((1-t)d)$ and let $\mathbf{s}_i, \mathbf{s}_i', \mathbf{s}_i'', \mathbf{r}_i, \mathbf{r}_i', \mathbf{r}_i''$ for $i \ge 1$ be uniformly random on $\{\pm 1\}$, all mutually independent.

Then $\hat{\rho}$ is the distribution of the vector

$$\begin{pmatrix} \sum_{i=1}^{\boldsymbol{d}} \boldsymbol{s}_i \log \left(\frac{1}{2} \left(1 + \boldsymbol{r}_i \tanh(\boldsymbol{\xi}_{\rho,i,1}/2) \right) \right) + \sum_{i=1}^{\boldsymbol{d}'} \boldsymbol{s}_i' \log \left(\frac{1}{2} \left(1 + \boldsymbol{r}_i' \tanh(\boldsymbol{\xi}_{\rho,i,1}'/2) \right) \right) \\ \sum_{i=1}^{\boldsymbol{d}} \boldsymbol{s}_i \log \left(\frac{1}{2} \left(1 + \boldsymbol{r}_i \tanh(\boldsymbol{\xi}_{\rho,i,2}/2) \right) \right) + \sum_{i=1}^{\boldsymbol{d}''} \boldsymbol{s}_i'' \log \left(\frac{1}{2} \left(1 + \boldsymbol{r}_i'' \tanh(\boldsymbol{\xi}_{\rho,i,2}'/2) \right) \right) \end{pmatrix}.$$

For any 0 < d < 2, $t \in [0,1]$ there exists a unique probability measure $\rho_{d,t} \in \mathscr{P}(\mathbb{R}^2)$ such that

$$\rho_{d,t} = \mathsf{logBP}_{d,t}^{\otimes}(\rho_{d,t}) \qquad \text{and} \qquad \int_{\mathbb{R}^2} \|\xi\|_2^2 \mathrm{d}\rho_{d,t}(\xi) < \infty.$$

Noela Müller Random 2-SAT 45 / 52

For any 0 < d < 2, $t \in [0,1]$ there exists a unique probability measure $\rho_{d,t} \in \mathscr{P}(\mathbb{R}^2)$ such that

$$\rho_{d,t} = \mathsf{logBP}_{d,t}^{\otimes}(\rho_{d,t}) \qquad \quad \mathsf{and} \qquad \quad \int_{\mathbb{R}^2} \|\xi\|_2^2 \mathrm{d}\rho_{d,t}(\xi) < \infty.$$

In addition, define a function $\mathscr{B}_{d,t}^{\otimes}: \mathscr{P}(\mathbb{R}^2) \to (0,\infty]$ by letting

$$\mathscr{B}_{d,t}^{\otimes}(\rho) = \mathbb{E}\left[\prod_{h=1}^{2}\log\left(1 - \frac{1}{4}(1 + r_1\tanh(\xi_{\rho,1,h}/2))(1 + r_2\tanh(\xi_{\rho,2,h}/2))\right)\right].$$

Noela Müller Random 2-SAT 45 / 52

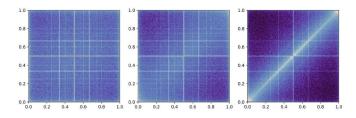
Theorem 1

We have $\eta(d) > 0$ and $\operatorname{Var} \log Z(\hat{\Phi}) \sim m \cdot \eta_d^2$, where

$$\eta(d)^2 = \int_0^1 \mathscr{B}_{d,t}^{\otimes}(\rho_{d,t}) \mathrm{d}t - \mathscr{B}_{d,0}^{\otimes}(\rho_{d,0}) \in (0,\infty).$$

Noela Müller Random 2-SAT 46 / 52

Visualization of (a function of) $\rho_{d,t}$



Visualization of (a function of) $\rho_{d,t}$ for d=1.9 and different values of t: t=0.1,0.5,0.9 (left to right).

As t increases, the correlations between the two coordinates of the random vector increase (brighter diagonal).

Noela Müller Random 2-SAT 47 / 52

From increments to CLT

Overall proof approach:

Combine techniques from variance computation with a generic martingale CLT.

48 / 52

From increments to CLT

Overall proof approach:

Combine techniques from variance computation with a generic martingale CLT.

For $0 \le M \le m_n$, set

$$\boldsymbol{Z}_{n,M} = \frac{\mathbb{E}\left[\log Z(\hat{\boldsymbol{\Phi}}) \mid \boldsymbol{a}_1, \dots, \boldsymbol{a}_M\right]}{\sqrt{m}}.$$

Then for any fixed n, $(Z_{n,M})_{0 \le M \le m_n}$ is a martingale (clause-exposure Doob martingale).

Noela Müller Random 2-SAT 48 / 52

From increments to CLT

Overall proof approach:

Combine techniques from variance computation with a generic martingale CLT.

For $0 \le M \le m_n$, set

$$\boldsymbol{Z}_{n,M} = \frac{\mathbb{E}\left[\log Z(\hat{\boldsymbol{\Phi}}) \mid \boldsymbol{a}_1, \dots, \boldsymbol{a}_M\right]}{\sqrt{m}}.$$

Then for any fixed n, $(\mathbf{Z}_{n,M})_{0 \le M \le m_n}$ is a martingale (clause-exposure Doob martingale).

Let $X_{n,M} = Z_{n,M} - Z_{n,M-1}$ be its martingale differences.

Noela Müller Random 2-SAT 48 / 52

The martingale differences

Also the squared martingale differences $X_{n,M}^2$ can be related to the operation of exchanging common for independent clauses in pairs of correlated formulas:

Noela Müller Random 2-SAT 49 / 52

The martingale differences

Also the squared martingale differences $X_{n,M}^2$ can be related to the operation of exchanging common for independent clauses in pairs of correlated formulas:

$$\begin{split} & \boldsymbol{\Delta}(M) = \log \left(\frac{Z(\hat{\boldsymbol{\Phi}}_1(M,m-M))}{Z(\hat{\boldsymbol{\Phi}}_1(M-1,m-M))} \right) \cdot \log \left(\frac{Z(\hat{\boldsymbol{\Phi}}_2(M,m-M))}{Z(\hat{\boldsymbol{\Phi}}_2(M-1,m-M))} \right), \\ & \boldsymbol{\Delta}'(M) = \log \left(\frac{Z(\hat{\boldsymbol{\Phi}}_1(M-1,m-M+1))}{Z(\hat{\boldsymbol{\Phi}}_1(M-1,m-M))} \right) \cdot \log \left(\frac{Z(\hat{\boldsymbol{\Phi}}_2(M-1,m-M+1))}{Z(\hat{\boldsymbol{\Phi}}_2(M-1,m-M))} \right), \\ & \boldsymbol{\Delta}''(M) = \log \left(\frac{Z(\hat{\boldsymbol{\Phi}}_1(M,m-M))}{Z(\hat{\boldsymbol{\Phi}}_1(M-1,m-M))} \right) \cdot \log \left(\frac{Z(\hat{\boldsymbol{\Phi}}_2(M-1,m-M+1))}{Z(\hat{\boldsymbol{\Phi}}_2(M-1,m-M))} \right). \end{split}$$

Lemma

We have $m_n X_M^2 = \mathbb{E} \left[\Delta(M) + \Delta(M)' - 2\Delta''(M) \mid \boldsymbol{a}_1, ..., \boldsymbol{a}_M \right].$

Noela Müller Random 2-SAT 49 / 52

The martingale differences

→ Using ideas and techniques from the variance computation, we show the following:

Proposition

For all 0 < d < 2 the martingale array $(\mathbf{Z}_{n,M})_{n \ge 1, 0 \le M \le m_n}$ satisfies

$$\lim_{n\to\infty} \mathbb{E}\left[\max_{1\leq M\leq m} |X_{n,M}|\right] = 0 \qquad \text{and} \qquad \lim_{n\to\infty} \mathbb{E}\left|\eta(d)^2 - \sum_{M=1}^m X_{n,M}^2\right| = 0.$$

Noela Müller Random 2-SAT 50 / 52

General martingale CLT

Theorem (Hall & Heyde, Theorem 3.2)

Let $(\boldsymbol{Z}_{n,i},\mathfrak{F}_{n,i})_{0\leq i\leq m_n,\,n\geq 1}$ be a zero-mean, square-integrable martingale array with differences $\boldsymbol{X}_{n,i}=\boldsymbol{Z}_{n,i}-\boldsymbol{Z}_{n,i-1}$ for $1\leq i\leq m_n$. Assume that there exists a constant η^2 such that

$$\begin{split} & \lim_{n \to \infty} \max_{1 \le i \le m_n} |X_{n,i}| = 0 & \text{in probability,} \\ & \lim_{n \to \infty} \sum_{i=1}^{m_n} X_{n,i}^2 = \eta^2 & \text{in probability,} \\ & \mathbb{E}\left[\max_{1 \le i \le m_n} X_{n,i}^2\right] & \text{is bounded in } n. \end{split}$$

Then Z_{n,m_n} converges in distribution to a Gaussian random variable with mean zero and variance η^2 .

Noela Müller Random 2-SAT 51 / 52

Take away

- The satisfiability threshold for random 2-SAT can be determined by a first and second moment analysis in the associated random digraph.
- The logarithm of the number of solutions in random 2-SAT, normalized by *n*, converges to a constant that matches the predictions from statistical physics.
- The logarithm of the number of solutions in random 2-SAT does not superconcentrate, which is different from previously known behaviour of other random CSPs.
- The proof of the last result does not proceed via moment analysis, but via the study of pairs of correlated random formulas.

Noela Müller Random 2-SAT 52 / 52