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Boolean satisfiability problem

The Boolean satisfiability problem from logic and computer science asks
the following:

Given a propositional formula @,
determine whether its variables can be consistently replaced by
TRUE or FALSE
such that the overall formula evaluates to TRUE.
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Restrict to k-CNF formulas ® =@,

Given n variables {xi,..., x;}, assume that
Pym=0U11V.. VO INLa V..Vl N ANECp1 V.o Vi),

is a conjunction of m clauses of the form a; =¢;,v...v ¢,
where £; j € {x1, X1, X2, X2, ..., X, X}

Noela Miiller Random 2-SAT 3/52



Restrict to k-CNF formulas ® =@,

Given n variables {xi,..., x;}, assume that
Pym=0U11V.. VO INLa V..Vl N ANECp1 V.o Vi),

is a conjunction of m clauses of the form a; =¢;,v...v ¢,
where £; j € {x1, X1, X2, X2, ..., X, X}

{x1,71X1, X2, X2, ..., Xn, X5} is the set of literals.

Noela Miiller Random 2-SAT 3/52
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© Does there exist a satisfying variable assignment?

@ |If a satisfying assignment exists, how many are there?
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Restrict to k-CNF formulas ® =@,

Given n variables {xi,..., x;}, assume that
Qum=l11V.. VOl INEa V.. NVl N ANy V.o Vi),

is a conjunction of m clauses of the form a; =¢;,v...v ¢,
where £; j € {x1, X1, X2, X2, ..., X, X}

{x1,71X1, X2, X2, ..., Xn, X5} is the set of literals.

@ Does there exist a satisfying variable assignment?
NP-complete for k=3 and in P for k=2.

@ If a satisfying assignment exists, how many are there?
#P-complete for k= 2.
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Random satisfiability

Early observation:

Many ‘industrial’ instances of Boolean formulas can be efficiently tackled
by existing SAT-solvers, despite (conjectured) theoretical hardness.
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Selman, Mitchell and Levesque (1996):
Random instances of 3-SAT with certain clause-to-variable ratios appear
to be very difficult to solve.
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Random satisfiability

Early observation:

Many ‘industrial’ instances of Boolean formulas can be efficiently tackled
by existing SAT-solvers, despite (conjectured) theoretical hardness.

Selman, Mitchell and Levesque (1996):
Random instances of 3-SAT with certain clause-to-variable ratios appear
to be very difficult to solve.

@ What are characteristic features of random formulas?

@ How are these related to the performance of algorithms?
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Random 2-SAT

Denote by ® = ®,, ,,, a random 2-CNF on n Boolean variables x,...,x,
with m clauses,
drawn independently and uniformly from all 4(};) possible 2-clauses:

Q=1 V)N .. NCp1V L),

Where el,].)gl,Zr---yem,Z € {xl) X1, X2, 1X2,..., X,y _'xn}-
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with m clauses,
drawn independently and uniformly from all 4(};) possible 2-clauses:

Q=1 V)N .. NCp1V L),
where el,].)gl,Zr---yem,Z € {xb X1, X2, X2,y Xy _'xn}-
Suppose that

m~dnl/2
for a fixed real d > 0.
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Random 2-SAT

Denote by ® = ®,, ,,, a random 2-CNF on n Boolean variables x,...,x,
with m clauses,
drawn independently and uniformly from all 4(};) possible 2-clauses:

Q=1 V)N .. NCp1V L),

Where el,llgl,Zr--'![m,z € {xly _|x17x2) _|x2, ---»xn; _l-x}’l}-
Suppose that
m~dnl/2

for a fixed real d > 0.

= The parameter d represents the average number of clauses in which
any variable x; appears.

Noela Miiller Random 2-SAT 5/52



Satisfiability threshold

m=0(n) is the ‘right’ clause-to-variable ratio to observe a (sharp)
transition from satisfiability to unsatisfiability:
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Satisfiability threshold

m =0(n) is the 'right’ clause-to-variable ratio to observe a (sharp)
transition from satisfiability to unsatisfiability:

Theorem (Chvatal & Reed (1992), Goerdt (1992), Fernandez de la

Vega (1992))

Let ® = ®,, ,, be a random 2-CNF on n Boolean variables with m ~ dn/2
for a fixed real d >0. Then for any € > 0:
@ Ifd<2—¢, w.h.p. ® is satistfiable.

@ Ifd=2+¢, w.h.p. ® is not satisfiable.
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Proof spirit

Approach:

Translate satisfiability question into graph-theoretical question
and apply techniques from the theory of random (di)graphs.
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Proof spirit

Approach:

Translate satisfiability question into graph-theoretical question
and apply techniques from the theory of random (di)graphs.

More specifically:

Both satisfiability and unsatisfiability of a formula are related to the
(non-)existence of cycles with a certain structure.

Then apply first and second moment method on cycle counts.
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General k=3

Let ® =®,, ,, be a random k-CNF
on n Boolean variables x1,...,x, with m clauses,
drawn independently and uniformly from all 2k(Z) possible k-clauses.
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General k=3

Let ® =®,, ,, be a random k-CNF
on n Boolean variables x1,...,x, with m clauses,
drawn independently and uniformly from all 2k(Z) possible k-clauses.

Suppose that m ~ dn/k for a fixed real d > 0.

Theorem (Friedgut (1999))

For each k =3 there is a function di(n) bounded above and below by
constants so that for every € > 0 the following hold:

o Ifd<(1-¢€)di(n), w.h.p. ® is satisfiable.
@ Ifd=(1+¢€)dr(n), w.h.p. ® is not satisfiable.
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General k=3

Let ® =®,, ,, be a random k-CNF
on n Boolean variables x1,...,x, with m clauses,
drawn independently and uniformly from all 2k(Z) possible k-clauses.

Suppose that m ~ dn/k for a fixed real d > 0.

Theorem (Friedgut (1999))

For each k =3 there is a function di(n) bounded above and below by
constants so that for every € > 0 the following hold:

o Ifd<(1-¢€)di(n), w.h.p. ® is satisfiable.
@ Ifd=(1+¢€)dr(n), w.h.p. ® is not satisfiable.

Does (dy(n)), converge?
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Random k-SAT as a spin glass model

In the early 2000's, physicists observed that random k-SAT
(and, more generally, random constraint satisfaction problems)
can be studied as examples of diluted spin glasses.

Noela Miiller Random 2-SAT 9/52



Random k-SAT as a spin glass model

In the early 2000's, physicists observed that random k-SAT
(and, more generally, random constraint satisfaction problems)
can be studied as examples of diluted spin glasses.

Based on the cavity method, Mézard, Parisi & Zecchina and Mertens,
Mézard & Zecchina (early 2000's) put forward an explicit characterisation
of the conjectured limit dy.
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Proof of the satisfiability threshold conjecture for large k

Theorem (Ding, Sly, Sun (2015))

Let ® =®,, ,, be a random k-CNF on n Boolean variables with m ~ dn/k
for a fixed real d >0. Moreover, assume that k = ko for an absolute

constant ky. Then there exists dj that matches the physics predictions
such that for all € > 0:

o Ifd=<dy—¢, w.h.p. ® is satisfiable.
o Ifd=d+e, w.h.p. ® is not satisfiable.
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Counting solutions

Let's return to the second initial question:

If a satisfying assignments exist,
how many of them are there typically?
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Let's return to the second initial question:

If a satisfying assignments exist,
how many of them are there typically?

The number of solutions is related to structural properties of the solution
space geometry.
— Connection to the computational nature of finding or sampling
solutions.
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Counting solutions

Let's return to the second initial question:

If a satisfying assignments exist,
how many of them are there typically?

The number of solutions is related to structural properties of the solution
space geometry.
— Connection to the computational nature of finding or sampling
solutions.

For random 2-SAT:
Monasson & Zecchina (1996) put forward a statistical physics based
prediction about the leading exponential order of the number of solutions.
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Denote by Z(®) the number of satisfying assignments of ®.

o = = E A
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Denote by Z(®) the number of satisfying assignments of ®.

Theorem (Achlioptas, Coja-Oghlan, Hahn-Klimroth, Lee, M.,

Penschuk, Zhou (2021))

Fix 0 < d <2. There exists a probability distribution 14 on (0,1) such that

for i.i.d. samples (u ;)i=1 from g4 and d~,d* ~Po(d/2), all independent,
we have

1
—log Z(®) ——E
n

: . .
log(l_llund,i L Pngasi | = 5 108(1 =y i, 2)
i= i=

=:(d).
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Related work

e Boufkhad and Dubois (1999) obtain best prior lower bound on
+10g Z(®).

e Franz & Leone (2003), Panchenko & Talagrand (2004) obtain an
asymptotically tight upper bound on %logZ((I)) via the interpolation
method.

@ The analysis of a general approximation algorithm by Montanari and
Shah (2007) implies analogous results (correlation decay, performance
of BP, limit of the log-partition function) for a ‘soft’ version of random
2-SAT for d < 1.16.

o Abbe and Montanari (2015): 1logZ(®) converges in probability to
a deterministic limit ¢(d) for Lebesgue-almost all d € (0,2). Their
approach does not give information on the value of ¢(d).
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High-level proof idea

o = = E A
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The expected value

Consider the ‘simpler’ task of determining the asymptotics of

1
;[E[IOg(Z((Dn) v D]
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The expected value

Consider the ‘simpler’ task of determining the asymptotics of

%[E[log(Z((I)n) v 1.

One approach to this problem:
Aizenman-Sims-Starr scheme from the mathematics of spin glasses:

Compute the asymptotic mean of a random variable on a formula of size n
by estimating the change of that mean upon going to a formula of size
n+1.

1 n-1
[log(Z((Dn) v1)]= ﬁ (Ellog(Z(®n+1) v 1)] —Ellog(Z(@n) Vv 1)])
=2

1
+—Ellog(Z(®@2) v 1)].

:
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The expected value

We have

lim E(log(Z(®p+1) v )] ~E[log(Z(®,) v 1)]

=E

d d’ d
log( ”Hd,i + H ”nd,i+d_ - Elog(l - I‘l’ﬂd,].”ﬂd,Z)} *
i=1

i=1

1
= lim ~Ellog(Z(@) v 1)

by Stolz-Cesaro Theorem.
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Coupling

The difference is calculated by coupling the formulas of size n and n+1

such that the latter is obtained from the former by a small expected

number of local changes.

(Dl

+ clauses ...

Lo

@,

......,tone variable, + clauses

1

~

(Dn+1
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Goal:
Get a handle on the expected change of the effects of

@ adding a (small) number of clauses and

@ adding a variable and a (small) number of clauses.
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Goal:
Get a handle on the expected change of the effects of

@ adding a (small) number of clauses and

@ adding a variable and a (small) number of clauses.
Both can be expressed in terms of the joint marginals of a bounded number

of variables with respect to the uniform distribution over satisfying
assignments.
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From digraphs to marginals

Denote by S(®@) the set of all satisfying assignments of ®.

o = = E A
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From digraphs to marginals

Denote by S(®@) the set of all satisfying assignments of ®.
Assuming that S(®) # @, let

_ 1]{0- € S(m)} {x1 ..... xn}
l—td)(a) = —Z((I)) , (0SS {il} l}

denote the uniform distribution on S(®), where Z(®) = |S(®)|.

(Encoding ‘true’ by +1 and ‘false’ by —1.)
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From digraphs to marginals

Denote by S(®@) the set of all satisfying assignments of ®.
Assuming that S(®) # @, let

Ue(0) = 1]{UZ(_:((L;()(I))_}» o € {+ 1}l
denote the uniform distribution on S(®), where Z(®) = |S(®)|.
(Encoding ‘true’ by +1 and ‘false’ by —1.)

Samples from ug are denoted by the boldface notation a.
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Back to the expectation

For simplicity, let ® + a denote the formula that is obtained from ® by
adding a uniformly random clause

a=S81xX; VSzJCj.

Assume that @ is satisfiable.

Noela Miiller Random 2-SAT 21 /52



Back to the expectation

For simplicity, let ® + a denote the formula that is obtained from ® by
adding a uniformly random clause

a=S81xX; VSsz.

Assume that @ is satisfiable.

Then
10g(Z(® + @) — log(Z(®)) =1 (M)
og a)) —log =log| —
and
Z@+a) <« VWokFa
20k, Z@ PR

=1l-o(o; # 51,0 # 82).
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Local changes to a given formula

Having expressed E[log(Z(®) v 1)] as a sum of local changes,
to analyse pg, we next perform the following steps:

@ Analyse (joint) marginals on the local limit of ®:
— Multitype Galton-Watson tree for formulas.
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» Establish decorrelation properties for random 2-SAT on the local limit
tree:
— Gibbs uniqueness.

Noela Miiller Random 2-SAT 22 /52



Local changes to a given formula

Having expressed E[log(Z(®) v 1)] as a sum of local changes,
to analyse pg, we next perform the following steps:

@ Analyse (joint) marginals on the local limit of ®:
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Local changes to a given formula

Having expressed E[log(Z(®) v 1)] as a sum of local changes,
to analyse pg, we next perform the following steps:

@ Analyse (joint) marginals on the local limit of ®:
— Multitype Galton-Watson tree for formulas.

» Establish decorrelation properties for random 2-SAT on the local limit
tree:
— Gibbs uniqueness.

» Characterize the root marginals for random 2-SAT on the local limit
tree via stochastic fixed point equation:
— analysis of belief propagation algorithm for marginals.

@ Show that log(Z(®) v 1)/n concentrates about its mean.
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22(0,1): set of Borel probability measures on (0,1).
Define BP;:22(0,1) — 22(0,1) as follows: Let d*,d™ ~Po(d/2) and
(1, 1)i=1 be a sequence of i.i.d. samples from 7 € 22(0,1) (all independent).
Then

d-
Hl:l I’lﬂ,i

BP,;(n) =% e po
Hizl Hyi™t Hi:1 Brivd
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22(0,1): set of Borel probability measures on (0,1).
Define BP;:22(0,1) — 22(0,1) as follows: Let d*,d™ ~Po(d/2) and
(1, 1)i=1 be a sequence of i.i.d. samples from 7 € 22(0,1) (all independent).
Then

H?;l Hy,i )

d” da*
Hi:l Ky i+ Hizl Briva

BP, () = 2(

Theorem (Achlioptas, Coja-Oghlan, Hahn-Klimroth, Lee, M.,

Penschuk, Zhou (2021))

For any 0 < d <2 the limit mg =limy_o, BP (6%) exists and

Liogz@) £k
n

_ . p
108(1_[ Br,it 1_[ ﬂnd,d+i) ) log (1~ ﬂnd,lﬂnd,z)] .
i=1 i=1
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Proposition
For any 0 < d <2, the random probability measure

1 n
Te = — Z 6H®(Uxi:1)
ni=y

converges to m, weakly in probability.

7y corresponds to the asymptotic probability that a uniformly chosen
variable within a uniformly random solution is set to ‘true’.
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How bad can the marginal structure get?

An approximation to the c.d.f. corresponding to m,, for d € {1.2,1.5,1.9}.
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How bad can the marginal structure get?

An approximation to the c.d.f. corresponding to m,, for d € {1.2,1.5,1.9}.

‘Complex’ marginal structure arises from inhomogeneity among variable
marginals: Variables are highly sensitive to imbalances in their local
neighbourhood.
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Let

App.:=1{x€[0,1]:mq({x}) > 0}
denote the pure point support of 7,4.

o = = E A
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Let
App. :={xe[0,1]:my({x}) > 0}

denote the pure point support of 7,4.

Theorem (M., Neininger, Zhu (2025+))
For any d € (0,2), the pure point support of 74 is

Ap.p. =Qn(O,1).
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Let
App. :={xe[0,1]:my({x}) > 0}

denote the pure point support of 7,4.

Theorem (M., Neininger, Zhu (2025+))
For any d € (0,2), the pure point support of 74 is

Ap.p. =Qn(O,1).

Moreover:
@ Forde (0,1], m, is a discrete measure;
e Forde(1,2), myq has a non-trivial continuous part g with
supp(mq,c) = [0,1].
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@ Qn(0,1) is a not too surprising subset of the pure point support: A
uniformly chosen variable has asymptotically non-negligible probability
to come from a small component (e.g. isolated vertex), such that its
marginal still corresponds to a proportion.
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@ Qn(0,1) is a not too surprising subset of the pure point support: A
uniformly chosen variable has asymptotically non-negligible probability
to come from a small component (e.g. isolated vertex), such that its
marginal still corresponds to a proportion.

@ Less immediate: Irrespective of d, the pure point support of 7,4
contains all rational numbers in (0,1), and a non-trivial continuous
part mq ¢ exists for d € (1,2).
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Fluctuations

Having a ‘law-of-large-numbers-type’ result, can we
derive the precise limiting distribution of a rescaled version of log Z (®)?
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Fluctuations

Having a ‘law-of-large-numbers-type’ result, can we
derive the precise limiting distribution of a rescaled version of log Z (®)?

In many previously studied random constraint satisfaction problems,
the logarithm of the number of solutions superconcentrates
for constraint densities up to the so-called condensation threshold
(a phase transition that shortly precedes the satisfiability threshold):

It has only bounded fluctuations.
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Example: Random k-SAT with regular literal degrees

Let ® = ®,,,, be a random k-CNF
on n Boolean variables xi,...,x, with m=2dn/k clauses of length k,
where k|2dn, defined as follows:

For each variable x;, choose exactly d “positive” and d “negative” literal
slots out of the km available literal slots
(without replacement).
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Example: Random k-SAT with regular literal degrees

Theorem (Coja-Oghlan, Wormald 2016)

There exists a constant kg such that for all k= ko and
d >0 such that 2d/k <2kIn2 - kIln2/2 -4 the following is true.
Let g = q(k) € (0,1) be the unique solution to the equation

2g=1-(1-g)~.

Then there exists a random variable W with finite second moment such
that as n — oo,

. (49 - p)*" V2+2(k—Dg -k d.
2" (2q)"™
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More superconcentration

Superconcentration also occurs in

e random k-XORSAT up to the satisfiability threshold [Ayre,
Coja-Oghlan, Gao, M. (2020)].

e random graph g-coloring up to the condensation threshold
[Coja-Oghlan, Jaafari, Efthymiou, Kang, Kapetanopoulos (2018)].

e random k-NAESAT up to the condensation threshold [Coja-Oghlan,
Kapetanopoulos, M. (2020)].

e symmetric perceptron, but with slightly different limiting
distribution (log-normal with bounded variance) [Abbe, Li, Sly (2021)].
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Fluctuations in random 2-SAT

Theorem (Chatterjee, Coja-Oghlan, M., Riddlesden, Rolvien,

Zakharov, Zhu (2025+))

For any 0 < d < 2, there exists 1(d)? € (0,00) such that

log Z(®) —E[log Z(®) | Z(®) > 0] 4
vm

N (0,17(d)?).
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High-level proof idea

o = = E A
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The variance

Consider the ‘simpler’ task of determining the asymptotics of the ‘variance’
of @.

For now, assume that @ is some satisfiable modification of ®:

Var(log Z(®)) = E [log Z(®)?] — E [log Z(®)]°.
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The variance
Consider the ‘simpler’ task of determining the asymptotics of the ‘variance’
of @.
For now, assume that ® is some satisfiable modification of ®:
Var(log Z(®)) =E [log Z(®)?] - E [log Z(®)].
In particular, for two independent copies ®,,®, of ®,

Var(log Z(®)) = E [log Z(®1)*] - E [log Z(®1) log Z (®5)].
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The variance
Consider the ‘simpler’ task of determining the asymptotics of the ‘variance’
of @.
For now, assume that ® is some satisfiable modification of ®:
Var(log Z(®)) =E [log Z(®)?] - E [log Z(®)].
In particular, for two independent copies ®,,®, of ®,
Var(log Z(®)) = E [log Z(®1)*] - E [log Z(®1) log Z (®5)].

— Key idea (morally also employed in spin glass theory; see e.g. Chen,
Dey, Panchenko (2017)):

Set up a family of correlated random formulas.
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Setting up correlated formulas

For integers M, M’ >0 we construct a correlated pair
(@, (M, M"),®,(M, M")) of formulas on the same variable set
V, =1x1,...,x,} as follows:
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Setting up correlated formulas

For integers M, M’ >0 we construct a correlated pair
(@, (M, M"),®,(M, M")) of formulas on the same variable set
V, =1x1,...,x,} as follows:

Let (a;)i=1, (@))i=1, (@))i=1 be sequences of mutually independent
uniformly random clauses on V;,, and set

O, (M,M)=aA---NayraiN---Ndy,,

O,(M,M)=ai A---Nayra|N---Nay,.

@, (M, M) and ®»(M, M") share clauses ay,...,ay.
Additionally, each contains another M’ independent clauses.
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Setting up correlated formulas

For integers M, M’ >0 we construct a correlated pair
(@, (M, M"),®,(M, M")) of formulas on the same variable set
V, =1x1,...,x,} as follows:

Let (a;)i=1, (@))i=1, (@))i=1 be sequences of mutually independent
uniformly random clauses on V;,, and set

O, (M,M)=aA---NayraiN---Ndy,,

O,(M,M)=ai A---Nayra|N---Nay,.

@, (M, M) and ®»(M, M") share clauses ay,...,ay.
Additionally, each contains another M’ independent clauses.

In particular, @, (m,0) = ®,(m,0),
while ®1(0,m), ®,(0, m) are independent.
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Telescoping sum

Interpolating between the extreme cases, we can write a telescoping sum
for the variance
of ®:

log Z(®1(m,0)) -log Z (2 (m, 0)) —log Z(®; (0, m)) -log Z(®5 (0, m))
=Y logZ(® (M, m— M))-log Z(®,(M, m— M)

M=1
—log Z(®; (M —-1,m—M+1))-log Z(®>(M - 1,m - M+1)).
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Telescoping sum

Interpolating between the extreme cases, we can write a telescoping sum
for the variance
of @:
log Z(®1(m,0)) -10g Z (®2(m, 0)) —log Z(®@1 (0, m)) -log Z(®, (0, m))
m
=Y logZ(® (M, m— M))-log Z(®,(M, m— M)
M=1

—log Z(®; (M —-1,m—M+1))-log Z(®>(M - 1,m - M+1)).

Each summand on the r.h.s. corresponds to a local change of
swapping a shared clause for a pair of independent clauses.
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Taking expectations

Problem:
We are actually interested in

log Z(®1(m,0)) -log Z(®,(m,0)) —log Z(®, (0, m)) -log Z(®, (0, m))
m
= Z log Z(®, (M, m— M)) -log Z(®2(M, m — M))
M=1

—logZ(®(M-1,m—M+1))-logZ(®,(M—-1,m—-M+1)),

but each ®; (M, m— M) has a non-zero probability of being unsatisfiable.
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Taking expectations

Problem:
We are actually interested in

log Z(®,(m,0)) -log Z(®,(m,0)) —log Z (P, (0, m)) -log Z(®, (0, m))

m
= Y logZ(®,(M, m— M) -log Z(@,(M, m — M))
M=1

—logZ(®(M-1,m—M+1))-logZ(®,(M—-1,m—-M+1)),

but each ®; (M, m— M) has a non-zero probability of being unsatisfiable.

Solution:

Turn each ®;,(M, m— M) by a satisfiable version ®, (M, m— M) s.t.
typically, logZ((I)h(M,m—]\/[)),logZ((iDh(M,m—M)) are close.
The construction of ® is based on the
Unit Clause Propagation algorithm.
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Local changes in correlated formula pairs

Having expressed the variance of log Z(®) as a sum of local changes, to
analyse these, we next perform the following steps:

@ Derive the local limit of pairs of correlated formulas:
— Multitype Galton-Watson tree for formula pairs.
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Local changes in correlated formula pairs

Having expressed the variance of log Z(®) as a sum of local changes, to
analyse these, we next perform the following steps:

@ Derive the local limit of pairs of correlated formulas:
— Multitype Galton-Watson tree for formula pairs.

@ Establish decorrelation properties for random 2-SAT on the local limit
tree:
— Gibbs uniqueness for formula pairs.
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Local changes in correlated formula pairs

Having expressed the variance of log Z(®) as a sum of local changes, to
analyse these, we next perform the following steps:

© Derive the local limit of pairs of correlated formulas:
— Multitype Galton-Watson tree for formula pairs.

@ Establish decorrelation properties for random 2-SAT on the local limit
tree:
— Gibbs uniqueness for formula pairs.

© Characterize the root marginals for random 2-SAT on the local limit
tree via stochastic fixed point equation:
— analysis of belief propagation algorithm for marginals in formula
pairs.
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Multitype Galton-Watson tree

formulas.

o = = E A
Noela Miiller Random 2-SAT

Visualization of the local limit of a pair of correlated random 2-SAT



The variance formula

Let 2(R?) be the set of all (Borel) probability measures on R2.
For 0<d <2 and 0 <t =<1 we define an operator

logBPf ,: 2 (R*) — 2 (R?), p— p =10gBPy ,(p),

as follows.
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The variance formula

Let

! i / El i ! El’i
(zp,i)iz].) (E;)’i)iZIJ (zl;yi)l'ZI’ é‘p,i = (zpv '1)1 {pyi = ( ,p, yl)) {;)yj = ( 5, a

$p.i2 $oip $p,i

be random vectors with distribution p, let ddl:StPo(td),
da,d’ dl:StPo((l— d) and let s;, 8,8, r;,r',r! for i =1 be uniformly
random on {+1}, all mutually independent.
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The variance formula

Let

1 i 1 fl i ’ fﬂi
&p,1)iz1, (‘f:o,l-)izl, (f’;yi)izl, Spi = (fp, '1), S, = ( f’ '1), f;,i = ( f),' !

$p.i2 $oip $p,i

be random vectors with distribution p, let ddi:StPo(td),

da,d’ di:StPo((l— d) and let s;, s}, s}, r;, 1,17} for i =1 be uniformly
random on {+1}, all mutually independent.

Then p is the distribution of the vector

1

Z?zl silog(3(1+r; tanh(§,;,/2))) + Z?;l s'log|3
1
2

}:?:1 silog(3 (1+ritanh(§,;,/2)))+ Z;’:”l s log

1+ r;. tanh(ffo,i,I/Z))) ) .

1+ r?tanh(&7 /2)))

1
2 0,i,2
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The variance formula

For any 0<d <2, t€0,1] there exists a unique probability measure
pa.r € P(R?) such that

par=1088% (par)  and [ 1Hdpa©) <co
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The variance formula

For any 0<d <2, t€0,1] there exists a unique probability measure
Pd,t€ P(R?) such that

par=1088% (par)  and [ 1Hdpa©) <co

In addition, define a function %% : 2 (R?) — (0,00] by letting

B ,(p) =E .

2 1
H log(l - Z(l +r tanh((fp,l'h/Z))(l +ry tanh(fp_zlhIZ)))
h=1
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The variance formula

We have n(d) >0 and VarlogZ((i)) ~ m~1ﬁi, where

1
ﬂ(d)2:f0 By (pa,)dt =BG (pa,) € (0,00).
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Visualization of (a function of) pg4 ;

0.0+
0.0

Visualization of (a function of) pg; for d = 1.9 and different values of :
t=0.1,0.5,0.9 (left to right).

As t increases, the correlations between the two coordinates of the random
vector increase (brighter diagonal).
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From increments to CLT

Overall proof approach:

Combine techniques from variance computation with a generic
martingale CLT.
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From increments to CLT

Overall proof approach:
Combine techniques from variance computation with a generic
martingale CLT.

For 0= M < m,,, set

P E[logZ(®) | ay,..., aym]
n,M — .
’ vm

Then for any fixed n, (Z,,m)o<m=m, is a martingale
(clause-exposure Doob martingale).
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From increments to CLT

Overall proof approach:
Combine techniques from variance computation with a generic
martingale CLT.

For 0= M < m,,, set

5 E[logZ(®) | ay,..., aym]
nM = .
’ vm

Then for any fixed n, (Z,,m)o<m=m, is a martingale
(clause-exposure Doob martingale).

Let X m =Znm— Zn,m-1 be its martingale differences.
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The martingale differences
Also the squared martingale differences X? o.M can be related to the

operation of exchanging common for |ndependent clauses in pairs of
correlated formulas:
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The martingale differences

Also the squared martingale differences X? o can be related to the
operation of exchanging common for mdependent clauses in pairs of
correlated formulas:

Z(®, (M, m = M) )-10 ( Z(®;(M, m - M) )
Z(®,(M—1,m— M) Z(®,(M—1,m— M)
Z((i)lA(M—l,m—MH))).lo (Z((i)gA(M—l,m—MH))),
Z(®(M-1,m- M) Z(@2(M —1,m— M))
ZA(<i>1(M,m—M)) )'lo (Z(tﬁzA(M—l,m—M+1)))'
Z(®,(M—1,m— M) Z(®,(M—1,m— M)

A(M) =log(

A'(M) = log(

A"(M) = log(

We have m, X35, =E[AM) +AM) —2A" (M) | ay,...,ay].
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The martingale differences

— Using ideas and techniques from the variance computation, we show
the following:

Proposition

For all 0 < d <2 the martingale array (Z n,m)n=1,0<M<m, Satisfies

lim [E[ max | X, ml|=0 and lim E
n—oo 1=sM<m n—oo

n(d)* - f > & |:o
= n,M :
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General martingale CLT

Theorem (Hall & Heyde, Theorem 3.2)

Let (Z,,i,8n,i)o<i=m, n=1 be a zero-mean, square-integrable martingale

array with differences X, i =Z i — Zp,i—1 for 1 <i < m,. Assume that

there exists a constant n* such that

lim max |X,;|l= in probability,
n—*00]<l<m
’}1_{{.10 Z X in probability,
E  max Xf“ is bounded in n.
<i<m,

Then Z,,m, converges in distribution to a Gaussian random variable with
mean zero and variance 1°.
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Take away

@ The satisfiability threshold for random 2-SAT can be determined by
a first and second moment analysis in the associated random digraph.

@ The logarithm of the number of solutions in random 2-SAT,
normalized by n, converges to a constant that matches the predictions
from statistical physics.

@ The logarithm of the number of solutions in random 2-SAT does not
superconcentrate, which is different from previously known
behaviour of other random CSPs.

@ The proof of the last result does not proceed via moment analysis, but
via the study of pairs of correlated random formulas.
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