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Boolean satisfiability problem

The Boolean satisfiability problem from logic and computer science asks
the following:

Given a propositional formula Φ,
determine whether its variables can be consistently replaced by

TRUE or FALSE
such that the overall formula evaluates to TRUE.
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Restrict to k-CNF formulas Φ=Φn,m :

Given n variables {x1, . . . , xn}, assume that

Φn,m = (`1,1 ∨ . . .∨`1,k )∧ (`2,1 ∨ . . .∨`2,k )∧ . . .∧ (`m,1 ∨ . . .∨`m,k ),

is a conjunction of m clauses of the form ai = `i ,1 ∨ . . .∨`i ,k ,
where `i , j ∈ {x1,¬x1, x2,¬x2, . . . , xn ,¬xn}.

{x1,¬x1, x2,¬x2, . . . , xn ,¬xn} is the set of literals.

1 Does there exist a satisfying variable assignment?

NP-complete for k ≥ 3 and in P for k = 2.

2 If a satisfying assignment exists, how many are there?

#P-complete for k ≥ 2.
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Random satisfiability

Early observation:

Many ‘industrial’ instances of Boolean formulas can be efficiently tackled
by existing SAT-solvers, despite (conjectured) theoretical hardness.

Selman, Mitchell and Levesque (1996):
Random instances of 3-SAT with certain clause-to-variable ratios appear

to be very difficult to solve.

What are characteristic features of random formulas?
How are these related to the performance of algorithms?
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Random 2-SAT

Denote by Φ=Φn,m a random 2-CNF on n Boolean variables x1, . . . , xn

with m clauses,
drawn independently and uniformly from all 4

(n
2

)
possible 2-clauses:

Φ= (`1,1 ∨`1,2)∧ . . .∧ (`m,1 ∨`m,2),

where `1,1,`1,2, . . . ,`m,2 ∈ {x1,¬x1, x2,¬x2, . . . , xn ,¬xn}.

Suppose that
m ∼ dn/2

for a fixed real d > 0.

=⇒ The parameter d represents the average number of clauses in which
any variable xi appears.
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Satisfiability threshold

m =Θ(n) is the ‘right’ clause-to-variable ratio to observe a (sharp)
transition from satisfiability to unsatisfiability:

Theorem (Chvátal & Reed (1992), Goerdt (1992), Fernandez de la
Vega (1992))
Let Φ=Φn,m be a random 2-CNF on n Boolean variables with m ∼ dn/2
for a fixed real d > 0. Then for any ε> 0:

If d ≤ 2−ε, w.h.p. Φ is satisfiable.
If d ≥ 2+ε, w.h.p. Φ is not satisfiable.
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Proof spirit

Approach:

Translate satisfiability question into graph-theoretical question
and apply techniques from the theory of random (di)graphs.

More specifically:

Both satisfiability and unsatisfiability of a formula are related to the
(non-)existence of cycles with a certain structure.

Then apply first and second moment method on cycle counts.

Noela Müller Random 2-SAT 7 / 52



Proof spirit

Approach:

Translate satisfiability question into graph-theoretical question
and apply techniques from the theory of random (di)graphs.

More specifically:

Both satisfiability and unsatisfiability of a formula are related to the
(non-)existence of cycles with a certain structure.

Then apply first and second moment method on cycle counts.

Noela Müller Random 2-SAT 7 / 52



General k ≥ 3

Let Φ=Φn,m be a random k-CNF
on n Boolean variables x1, . . . , xn with m clauses,

drawn independently and uniformly from all 2k
(n

k

)
possible k-clauses.

Suppose that m ∼ dn/k for a fixed real d > 0.

Theorem (Friedgut (1999))
For each k ≥ 3 there is a function dk (n) bounded above and below by
constants so that for every ε> 0 the following hold:

If d ≤ (1−ε)dk (n), w.h.p. Φ is satisfiable.
If d ≥ (1+ε)dk (n), w.h.p. Φ is not satisfiable.

Does (dk (n))n converge?
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Random k-SAT as a spin glass model

In the early 2000’s, physicists observed that random k-SAT
(and, more generally, random constraint satisfaction problems)

can be studied as examples of diluted spin glasses.

Based on the cavity method, Mézard, Parisi & Zecchina and Mertens,
Mézard & Zecchina (early 2000’s) put forward an explicit characterisation

of the conjectured limit dk .
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Proof of the satisfiability threshold conjecture for large k

Theorem (Ding, Sly, Sun (2015))
Let Φ=Φn,m be a random k-CNF on n Boolean variables with m ∼ dn/k
for a fixed real d > 0. Moreover, assume that k ≥ k0 for an absolute
constant k0. Then there exists dk that matches the physics predictions
such that for all ε> 0:

If d ≤ dk −ε, w.h.p. Φ is satisfiable.
If d ≥ dk +ε, w.h.p. Φ is not satisfiable.
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Counting solutions

Let’s return to the second initial question:

If a satisfying assignments exist,
how many of them are there typically?

The number of solutions is related to structural properties of the solution
space geometry.

−→ Connection to the computational nature of finding or sampling
solutions.

For random 2-SAT:
Monasson & Zecchina (1996) put forward a statistical physics based

prediction about the leading exponential order of the number of solutions.
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Denote by Z (Φ) the number of satisfying assignments of Φ.

Theorem (Achlioptas, Coja-Oghlan, Hahn-Klimroth, Lee, M.,
Penschuk, Zhou (2021))
Fix 0 < d < 2. There exists a probability distribution πd on (0,1) such that
for i.i.d. samples (µπd ,i )i≥1 from πd and d−,d+ ∼ Po(d/2), all independent,
we have

1

n
log Z (Φ)

P−→ E

[
log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,d−+i

)
− d

2
log

(
1−µπd ,1µπd ,2

)]
=:φ(d).
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Related work

Boufkhad and Dubois (1999) obtain best prior lower bound on
1
n log Z (Φ).

Franz & Leone (2003), Panchenko & Talagrand (2004) obtain an
asymptotically tight upper bound on 1

n log Z (Φ) via the interpolation
method.

The analysis of a general approximation algorithm by Montanari and
Shah (2007) implies analogous results (correlation decay, performance
of BP, limit of the log-partition function) for a ‘soft’ version of random
2-SAT for d < 1.16.

Abbe and Montanari (2015): 1
n log Z (Φ) converges in probability to

a deterministic limit φ(d) for Lebesgue-almost all d ∈ (0,2). Their
approach does not give information on the value of φ(d).
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High-level proof idea
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The expected value
Consider the ‘simpler’ task of determining the asymptotics of

1

n
E[log(Z (Φn)∨1)].

One approach to this problem:
Aizenman-Sims-Starr scheme from the mathematics of spin glasses:

Compute the asymptotic mean of a random variable on a formula of size n
by estimating the change of that mean upon going to a formula of size

n +1.

1

n
E[log(Z (Φn)∨1)] = 1

n

n−1∑
N=2

(
E[log(Z (ΦN+1)∨1)]−E[log(Z (ΦN )∨1)]

)
+ 1

n
E[log(Z (Φ2)∨1)].
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The expected value

Proposition

We have

lim
n→∞E[log(Z (Φn+1)∨1)]−E[log(Z (Φn)∨1)]

= E
[

log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)
− d

2
log

(
1−µπd ,1µπd ,2

)]
.

= lim
n→∞

1

n
E[log(Z (Φn )∨1)]

by Stolz-Cesàro Theorem.
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Coupling

The difference is calculated by coupling the formulas of size n and n +1
such that the latter is obtained from the former by a small expected

number of local changes.

Φ′

Φn Φn+1

+ clauses + one variable, + clauses

Noela Müller Random 2-SAT 18 / 52



Goal:
Get a handle on the expected change of the effects of

1 adding a (small) number of clauses and
2 adding a variable and a (small) number of clauses.

Both can be expressed in terms of the joint marginals of a bounded number
of variables with respect to the uniform distribution over satisfying

assignments.
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From digraphs to marginals

Denote by S(Φ) the set of all satisfying assignments of Φ.

Assuming that S(Φ) 6= ;, let

µΦ(σ) = 1 {σ ∈ S(Φ)}

Z (Φ)
, σ ∈ {±1}{x1,...,xn },

denote the uniform distribution on S(Φ), where Z (Φ) = |S(Φ)|.

(Encoding ‘true’ by +1 and ‘false’ by −1.)

Samples from µΦ are denoted by the boldface notation σ.
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Back to the expectation

For simplicity, let Φ+a denote the formula that is obtained from Φ by
adding a uniformly random clause

a = s1xi ∨ s2x j .

Assume that Φ is satisfiable.

Then

log(Z (Φ+a))− log(Z (Φ)) = log

(
Z (Φ+a)

Z (Φ)

)
and

Z (Φ+a)

Z (Φ)
= ∑
σ:σ|=Φ

1{σ |= a}

Z (Φ)
=µΦ(σ |= a)

= 1−µΦ(σi 6= s1,σ j 6= s2).
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Local changes to a given formula

Having expressed E[log(Z (Φ)∨1)] as a sum of local changes,
to analyse µΦ, we next perform the following steps:

1 Analyse (joint) marginals on the local limit of Φ:
−→ Multitype Galton-Watson tree for formulas.

Ï Establish decorrelation properties for random 2-SAT on the local limit
tree:
−→ Gibbs uniqueness.

Ï Characterize the root marginals for random 2-SAT on the local limit
tree via stochastic fixed point equation:
−→ analysis of belief propagation algorithm for marginals.

2 Show that log(Z (Φ)∨1)/n concentrates about its mean.
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P (0,1): set of Borel probability measures on (0,1).
Define BPd : P (0,1) →P (0,1) as follows: Let d+,d− ∼ Po(d/2) and

(µπ,i )i≥1 be a sequence of i.i.d. samples from π ∈P (0,1) (all independent).
Then

BPd (π) =L

( ∏d−
i=1µπ,i∏d−

i=1µπ,i +
∏d+

i=1µπ,i+d−

)
.

Theorem (Achlioptas, Coja-Oghlan, Hahn-Klimroth, Lee, M.,
Penschuk, Zhou (2021))

For any 0 < d < 2 the limit πd = lim`→∞ BP`(δ 1
2

) exists and

1

n
log Z (Φ)

P−→ E

[
log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,d−+i

)
− d

2
log

(
1−µπd ,1µπd ,2

)]
.
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2

) exists and

1

n
log Z (Φ)

P−→ E

[
log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,d−+i

)
− d

2
log

(
1−µπd ,1µπd ,2

)]
.
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Proposition
For any 0 < d < 2, the random probability measure

πΦ = 1

n

n∑
i=1

δµΦ(σxi =1)

converges to πd weakly in probability.

πd corresponds to the asymptotic probability that a uniformly chosen
variable within a uniformly random solution is set to ‘true’.
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How bad can the marginal structure get?

An approximation to the c.d.f. corresponding to πd , for d ∈ {1.2,1.5,1.9}.

‘Complex’ marginal structure arises from inhomogeneity among variable
marginals: Variables are highly sensitive to imbalances in their local

neighbourhood.
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Let
Ap.p. := {x ∈ [0,1] :πd ({x}) > 0}

denote the pure point support of πd .

Theorem (M., Neininger, Zhu (2025+))
For any d ∈ (0,2), the pure point support of πd is

Ap.p. =Q∩ (0,1).

Moreover:
For d ∈ (0,1], πd is a discrete measure;
For d ∈ (1,2), πd has a non-trivial continuous part πd ,c with
supp(πd ,c) = [0,1].
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Figure: Ralph Neininger Figure: Haodong Zhu
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Q∩ (0,1) is a not too surprising subset of the pure point support: A
uniformly chosen variable has asymptotically non-negligible probability
to come from a small component (e.g. isolated vertex), such that its
marginal still corresponds to a proportion.

Less immediate: Irrespective of d , the pure point support of πd

contains all rational numbers in (0,1), and a non-trivial continuous
part πd ,c exists for d ∈ (1,2).
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Fluctuations

Having a ‘law-of-large-numbers-type’ result, can we
derive the precise limiting distribution of a rescaled version of log Z (Φ)?

In many previously studied random constraint satisfaction problems,
the logarithm of the number of solutions superconcentrates

for constraint densities up to the so-called condensation threshold
(a phase transition that shortly precedes the satisfiability threshold):

It has only bounded fluctuations.
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Example: Random k-SAT with regular literal degrees

Let Φ̃= Φ̃n,m be a random k-CNF
on n Boolean variables x1, . . . , xn with m = 2dn/k clauses of length k,

where k | 2dn, defined as follows:

For each variable xi , choose exactly d “positive” and d “negative” literal
slots out of the km available literal slots

(without replacement).
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Example: Random k-SAT with regular literal degrees

Theorem (Coja-Oghlan, Wormald 2016)
There exists a constant k0 such that for all k ≥ k0 and
d > 0 such that 2d/k ≤ 2k ln2−k ln2/2−4 the following is true.
Let q = q(k) ∈ (0,1) be the unique solution to the equation

2q = 1− (1−q)k .

Then there exists a random variable W with finite second moment such
that as n →∞,

Z ·
(
4q(1−q)

)dn √
2+2(k −1)q −k

2n
(
2q

)m
d−→W.
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More superconcentration

Superconcentration also occurs in

random k-XORSAT up to the satisfiability threshold [Ayre,
Coja-Oghlan, Gao, M. (2020)].
random graph q-coloring up to the condensation threshold
[Coja-Oghlan, Jaafari, Efthymiou, Kang, Kapetanopoulos (2018)].
random k-NAESAT up to the condensation threshold [Coja-Oghlan,
Kapetanopoulos, M. (2020)].
symmetric perceptron, but with slightly different limiting
distribution (log-normal with bounded variance) [Abbe, Li, Sly (2021)].
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Fluctuations in random 2-SAT

Theorem (Chatterjee, Coja-Oghlan, M., Riddlesden, Rolvien,
Zakharov, Zhu (2025+))

For any 0 < d < 2, there exists η(d)2 ∈ (0,∞) such that

log Z (Φ)−E[log Z (Φ) | Z (Φ) > 0]p
m

d−→N
(
0,η(d)2) .
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High-level proof idea
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The variance

Consider the ‘simpler’ task of determining the asymptotics of the ‘variance’
of Φ.

For now, assume that Φ̂ is some satisfiable modification of Φ:

Var(log Z (Φ̂)) = E[
log Z (Φ̂)2]−E[

log Z (Φ̂)
]2

.

In particular, for two independent copies Φ̂1,Φ̂2 of Φ̂,

Var(log Z (Φ̂)) = E[
log Z (Φ̂1)2]−E[

log Z (Φ̂1) log Z (Φ̂2)
]

.

−→ Key idea (morally also employed in spin glass theory; see e.g. Chen,
Dey, Panchenko (2017)):

Set up a family of correlated random formulas.
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Setting up correlated formulas

For integers M , M ′ ≥ 0 we construct a correlated pair
(Φ1(M , M ′),Φ2(M , M ′)) of formulas on the same variable set

Vn = {x1, . . . , xn} as follows:

Let (ai )i≥1, (a ′
i )i≥1, (a ′′

i )i≥1 be sequences of mutually independent
uniformly random clauses on Vn , and set

Φ1(M , M ′) = a1 ∧·· ·∧aM∧a ′
1 ∧·· ·∧a ′

M ′ ,

Φ2(M , M ′) = a1 ∧·· ·∧aM∧a ′′
1 ∧·· ·∧a ′′

M ′ .

Φ1(M , M ′) and Φ2(M , M ′) share clauses a1, . . . , aM .
Additionally, each contains another M ′ independent clauses.

In particular, Φ1(m,0) =Φ2(m,0),
while Φ1(0,m), Φ2(0,m) are independent.

Noela Müller Random 2-SAT 38 / 52



Setting up correlated formulas

For integers M , M ′ ≥ 0 we construct a correlated pair
(Φ1(M , M ′),Φ2(M , M ′)) of formulas on the same variable set

Vn = {x1, . . . , xn} as follows:

Let (ai )i≥1, (a ′
i )i≥1, (a ′′

i )i≥1 be sequences of mutually independent
uniformly random clauses on Vn , and set

Φ1(M , M ′) = a1 ∧·· ·∧aM∧a ′
1 ∧·· ·∧a ′

M ′ ,

Φ2(M , M ′) = a1 ∧·· ·∧aM∧a ′′
1 ∧·· ·∧a ′′

M ′ .

Φ1(M , M ′) and Φ2(M , M ′) share clauses a1, . . . , aM .
Additionally, each contains another M ′ independent clauses.

In particular, Φ1(m,0) =Φ2(m,0),
while Φ1(0,m), Φ2(0,m) are independent.

Noela Müller Random 2-SAT 38 / 52



Setting up correlated formulas

For integers M , M ′ ≥ 0 we construct a correlated pair
(Φ1(M , M ′),Φ2(M , M ′)) of formulas on the same variable set

Vn = {x1, . . . , xn} as follows:

Let (ai )i≥1, (a ′
i )i≥1, (a ′′

i )i≥1 be sequences of mutually independent
uniformly random clauses on Vn , and set

Φ1(M , M ′) = a1 ∧·· ·∧aM∧a ′
1 ∧·· ·∧a ′

M ′ ,

Φ2(M , M ′) = a1 ∧·· ·∧aM∧a ′′
1 ∧·· ·∧a ′′

M ′ .

Φ1(M , M ′) and Φ2(M , M ′) share clauses a1, . . . , aM .
Additionally, each contains another M ′ independent clauses.

In particular, Φ1(m,0) =Φ2(m,0),
while Φ1(0,m), Φ2(0,m) are independent.

Noela Müller Random 2-SAT 38 / 52



Telescoping sum

Interpolating between the extreme cases, we can write a telescoping sum
for the variance

of Φ̂:

log Z (Φ̂1(m,0)) · log Z (Φ̂2(m,0))− log Z (Φ̂1(0,m)) · log Z (Φ̂2(0,m))

=
m∑

M=1
log Z (Φ̂1(M ,m −M)) · log Z (Φ̂2(M ,m −M))

− log Z (Φ̂1(M −1,m −M +1)) · log Z (Φ̂2(M −1,m −M +1)).

Each summand on the r.h.s. corresponds to a local change of
swapping a shared clause for a pair of independent clauses.
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Taking expectations

Problem:
We are actually interested in

log Z (Φ1(m,0)) · log Z (Φ2(m,0))− log Z (Φ1(0,m)) · log Z (Φ2(0,m))

=
m∑

M=1
log Z (Φ1(M ,m −M)) · log Z (Φ2(M ,m −M))

− log Z (Φ1(M −1,m −M +1)) · log Z (Φ2(M −1,m −M +1)),

but each Φh(M ,m −M) has a non-zero probability of being unsatisfiable.

Solution:
Turn each Φh(M ,m −M) by a satisfiable version Φ̂h(M ,m −M) s.t.

typically, log Z (Φh(M ,m −M)), log Z (Φ̂h(M ,m −M)) are close.
The construction of Φ̂ is based on the
Unit Clause Propagation algorithm.
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Local changes in correlated formula pairs

Having expressed the variance of log Z (Φ̂) as a sum of local changes, to
analyse these, we next perform the following steps:

1 Derive the local limit of pairs of correlated formulas:
−→ Multitype Galton-Watson tree for formula pairs.

2 Establish decorrelation properties for random 2-SAT on the local limit
tree:
−→ Gibbs uniqueness for formula pairs.

3 Characterize the root marginals for random 2-SAT on the local limit
tree via stochastic fixed point equation:
−→ analysis of belief propagation algorithm for marginals in formula
pairs.

Noela Müller Random 2-SAT 41 / 52



Local changes in correlated formula pairs

Having expressed the variance of log Z (Φ̂) as a sum of local changes, to
analyse these, we next perform the following steps:

1 Derive the local limit of pairs of correlated formulas:
−→ Multitype Galton-Watson tree for formula pairs.

2 Establish decorrelation properties for random 2-SAT on the local limit
tree:
−→ Gibbs uniqueness for formula pairs.

3 Characterize the root marginals for random 2-SAT on the local limit
tree via stochastic fixed point equation:
−→ analysis of belief propagation algorithm for marginals in formula
pairs.

Noela Müller Random 2-SAT 41 / 52



Local changes in correlated formula pairs

Having expressed the variance of log Z (Φ̂) as a sum of local changes, to
analyse these, we next perform the following steps:

1 Derive the local limit of pairs of correlated formulas:
−→ Multitype Galton-Watson tree for formula pairs.

2 Establish decorrelation properties for random 2-SAT on the local limit
tree:
−→ Gibbs uniqueness for formula pairs.

3 Characterize the root marginals for random 2-SAT on the local limit
tree via stochastic fixed point equation:
−→ analysis of belief propagation algorithm for marginals in formula
pairs.

Noela Müller Random 2-SAT 41 / 52



Multitype Galton-Watson tree

Visualization of the local limit of a pair of correlated random 2-SAT
formulas.
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The variance formula

Let P (R2) be the set of all (Borel) probability measures on R2.
For 0 < d < 2 and 0 ≤ t ≤ 1 we define an operator

logBP⊗d ,t :P
(
R2)→P

(
R2) , ρ 7→ ρ̂ = logBP⊗d ,t (ρ),

as follows.
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The variance formula

Let

(ξρ,i )i≥1, (ξ′ρ,i )i≥1, (ξ′′ρ,i )i≥1, ξρ,i =
(
ξρ,i ,1

ξρ,i ,2

)
, ξ′ρ,i =

(
ξ′ρ,i ,1

ξ′ρ,i ,2

)
, ξ′′ρ,i =

(
ξ′′ρ,i ,1

ξ′′ρ,i ,2

)

be random vectors with distribution ρ, let d
dist= Po(td),

d ′,d ′′ dist= Po((1− t )d) and let si , s ′i , s ′′i ,r i ,r ′
i ,r ′′

i for i ≥ 1 be uniformly
random on {±1}, all mutually independent.

Then ρ̂ is the distribution of the vector∑d
i=1 si log

( 1
2

(
1+ r i tanh(ξρ,i ,1/2)

))+∑d ′
i=1 s ′i log

(
1
2

(
1+ r ′

i tanh(ξ′ρ,i ,1/2)
))

∑d
i=1 si log

( 1
2

(
1+ r i tanh(ξρ,i ,2/2)

))+∑d ′′
i=1 s ′′i log

(
1
2

(
1+ r ′′

i tanh(ξ′′ρ,i ,2/2)
)) .
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The variance formula

For any 0 < d < 2, t ∈ [0,1] there exists a unique probability measure
ρd ,t ∈P (R2) such that

ρd ,t = logBP⊗d ,t (ρd ,t ) and
∫
R2
‖ξ‖2

2dρd ,t (ξ) <∞.

In addition, define a function B⊗
d ,t : P (R2) → (0,∞] by letting

B⊗
d ,t (ρ) = E

[
2∏

h=1
log

(
1− 1

4
(1+ r 1 tanh(ξρ,1,h/2))(1+ r 2 tanh(ξρ,2,h/2))

)]
.
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The variance formula

Theorem

We have η(d) > 0 and Varlog Z (Φ̂) ∼ m ·η2
d , where

η(d)2 =
∫ 1

0
B⊗

d ,t (ρd ,t )dt −B⊗
d ,0(ρd ,0) ∈ (0,∞).
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Visualization of (a function of) ρd ,t

Visualization of (a function of) ρd ,t for d = 1.9 and different values of t :
t = 0.1,0.5,0.9 (left to right).

As t increases, the correlations between the two coordinates of the random
vector increase (brighter diagonal).
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From increments to CLT

Overall proof approach:

Combine techniques from variance computation with a generic
martingale CLT.

For 0 ≤ M ≤ mn , set

Z n,M = E
[
log Z (Φ̂) | a1, . . . , aM

]
p

m
.

Then for any fixed n, (Z n,M )0≤M≤mn is a martingale
(clause-exposure Doob martingale).

Let X n,M = Z n,M −Z n,M−1 be its martingale differences.
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The martingale differences

Also the squared martingale differences X 2
n,M can be related to the

operation of exchanging common for independent clauses in pairs of
correlated formulas:

∆(M) = log

(
Z (Φ̂1(M ,m −M))

Z (Φ̂1(M −1,m −M))

)
· log

(
Z (Φ̂2(M ,m −M))

Z (Φ̂2(M −1,m −M))

)
,

∆′(M) = log

(
Z (Φ̂1(M −1,m −M +1))

Z (Φ̂1(M −1,m −M))

)
· log

(
Z (Φ̂2(M −1,m −M +1))

Z (Φ̂2(M −1,m −M))

)
,

∆′′(M) = log

(
Z (Φ̂1(M ,m −M))

Z (Φ̂1(M −1,m −M))

)
· log

(
Z (Φ̂2(M −1,m −M +1))

Z (Φ̂2(M −1,m −M))

)
.

Lemma

We have mn X 2
M = E[

∆(M)+∆(M)′−2∆′′(M) | a1, . . . , aM
]

.
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n,M can be related to the

operation of exchanging common for independent clauses in pairs of
correlated formulas:

∆(M) = log

(
Z (Φ̂1(M ,m −M))

Z (Φ̂1(M −1,m −M))

)
· log

(
Z (Φ̂2(M ,m −M))

Z (Φ̂2(M −1,m −M))

)
,

∆′(M) = log

(
Z (Φ̂1(M −1,m −M +1))

Z (Φ̂1(M −1,m −M))

)
· log

(
Z (Φ̂2(M −1,m −M +1))

Z (Φ̂2(M −1,m −M))

)
,

∆′′(M) = log

(
Z (Φ̂1(M ,m −M))

Z (Φ̂1(M −1,m −M))

)
· log

(
Z (Φ̂2(M −1,m −M +1))

Z (Φ̂2(M −1,m −M))

)
.

Lemma

We have mn X 2
M = E[

∆(M)+∆(M)′−2∆′′(M) | a1, . . . , aM
]

.
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The martingale differences

−→ Using ideas and techniques from the variance computation, we show
the following:

Proposition

For all 0 < d < 2 the martingale array (Z n,M )n≥1,0≤M≤mn satisfies

lim
n→∞E

[
max

1≤M≤m
|X n,M |

]
= 0 and lim

n→∞E

∣∣∣∣∣η(d)2 −
m∑

M=1
X 2

n,M

∣∣∣∣∣= 0.
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General martingale CLT

Theorem (Hall & Heyde, Theorem 3.2)
Let (Z n,i ,Fn,i )0≤i≤mn ,n≥1 be a zero-mean, square-integrable martingale
array with differences X n,i = Z n,i −Z n,i−1 for 1 ≤ i ≤ mn . Assume that
there exists a constant η2 such that

lim
n→∞ max

1≤i≤mn

|X n,i | = 0 in probability,

lim
n→∞

mn∑
i=1

X 2
n,i = η2 in probability,

E

[
max

1≤i≤mn

X 2
n,i

]
is bounded in n.

Then Z n,mn converges in distribution to a Gaussian random variable with
mean zero and variance η2.
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Take away

The satisfiability threshold for random 2-SAT can be determined by
a first and second moment analysis in the associated random digraph.
The logarithm of the number of solutions in random 2-SAT,
normalized by n, converges to a constant that matches the predictions
from statistical physics.
The logarithm of the number of solutions in random 2-SAT does not
superconcentrate, which is different from previously known
behaviour of other random CSPs.
The proof of the last result does not proceed via moment analysis, but
via the study of pairs of correlated random formulas.
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