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Synopsis

Theorem [H.-Peters]

Let {Gn} be a recursive sequence of graphs, each with k labeled vertices:
Gn+1 = R(Gn) is defined by joining m copies of Gn along labeled vertices.

The recursion operator R induces a dynamical system

Fω⌐P2k⌐1 → P2k⌐1 (ω ∈ C).
There is a k-dim Fω-invariant algebraic subvarietyM ⊂ P2k⌐1.
If the recursion operator R is non-degenerate and expanding then
zeros of the independence poly’s ZGn

(ω) avoid a nbhd of R+.

Corollary: The limiting free energy is well-defined and real analytic on all of R+:
there are no phase transitions.
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Prologue:

Partition Functions and Phase Transitions
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Motivation from Statistical Physics

The Hard-Core (Neighbour Exclusion) model on a (possibly infinite) graph G

represents the behavior of large particles at the vertices of G which excludes the
presence of other particles at the adjacent sites.

Gas molecules absorbed in the dual of a graphene lattice

A (spin) configuration on G is a vertex assignment ε ⌐ V (G)→ {0,1}.
The weight of ε is

e
⌐H(ε,ω) = ⌜⌜⌜⌝⌜⌜⌝

ω#ε⌐1(1), ε is independent

0, otherwise.

The partition function is

ZG(ω) ⌐= ⩀
ind. ε∶V (G)→{0,1}

ω#ε⌐1(1)

— the independence polynomial of G .
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Phase transitions (for the Hard-Core model)

Let {Gn} be a finite graph sequence approximating a limiting graph G⌐.
Phase transitions ↭ (non-)uniqueness of Gibbs measures

Ehrenfest classification

The pressure (or limiting free energy per site) for {Gn} is defined as

P(ω) ⌐= lim
n→⋊

logZGn
(ω)

#V (Gn) (for ω ∈ R+).

Phase transition of order k at ω0 ∈ R+ — discontinuity of the k-th order
derivative of the limiting free energy P at ω0.
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Phase transitions for regular lattices

Folklore Conjecture

Let {Gn} be a sequence of finite graphs approximating a regular lattice. Then
there exists a unique critical parameter ωc ∈ R+ such that

⌜⌜⌜⌝⌜⌜⌝
ω0 < ωc ↢ unique Gibbs measure at ω0

ω0 > ωc ↢ multiple Gibbs measures at ω0.

[Yang-Lee’1952]

For “good” graph sequences approximating the lattice Zd :

the limiting free energy is well-defined and continuous on R+.
If zeros of the polynomials ZGn

(ω) avoid a complex nbhd of ω0 ∈ R+, then
the limiting free energy is real analytic at ω0.

Regular lattice are hard!
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Chapter I:

Recursive Graphs
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Examples of recursive graphs I — Regular rooted trees

[Rivera-Letelier & Sombra’2019 (talk at the Fields Institute)]

For the Hard-Core model on d -ary rooted trees there is a unique phase
transition (of infinite order).

Zeros accumulate at a unique parameter in R+ given by ω(d) = d
d

(d+1)d⌐1 .
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Examples of recursive graphs II — Hierarchical lattices

[Bleher-Lyubich-Roeder’2010, Chio-Roeder’2021]

For the Ising model on diamond hierarchical lattices there is a unique phase
transition.
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Recursive graphs

Gk = {finite graphs G with k vertices labeled 1, . . . , k}
Graph recursion operator R = Rm,H,! ⌐ Gk → Gk

Given a graph G ∈ Gk
Take m copies G(1), . . . ,G(m) of G
Identify labeled vertices according to a multigraph H on {1, . . . ,m}:
ϑ ∈ {1, . . . , k} ↦ partition of {1, . . . ,m} ↝ edges of H

Assign k labels according to a labeling map ! ⌐ {1, . . . ,k}→ E(H)
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Examples of recursions — Sierpiński gasket recursion
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Examples of recursions — Dendrite (z2 + i) recursion
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Non-degenerate and expanding recursions

Let R = Rm,H,! ⌐ Gk → Gk be a graph recursion operator.

Starting graph G0 ∈ Gk ↝ recursive graph sequence {Gn = Rn(G0)}
R is non-degenerate if for some (and thus for all) connected G0

the vertex degrees of Gn are uniformly bounded (in n).

R is expanding if for some (and thus for all) connected G0

the distance between vertices labeled ϑ, ϑ′ in Gn diverges to ∞ as n →∞
for all ϑ ≠ ϑ′ ∈ {1, . . . , k}.
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Chapter II:

Dynamical System
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Let’s partition the partition function!

Given G ∈ Gk , let L(G) ⊂ V (G) be the k labeled vertices in G .

For x = (x1, . . . , xk) ∈ {0,1}k — “an assignment on L(G)”, we set

Z
x

G
(ω) ⌐= ⩀

ind. ε∶V (G)→{0,1}
ε∼x on L(G)

ω#ε⌐1(1).

Then
ZG(ω) = ⩀

x∈{0,1}k
Z

x

G
(ω).

We have a natural coordinate map ϑω⌐Gk → C2k

G ↦ ⌝Z (0,...,0)
G

(ω), . . . ,Z (1,...,1)
G

(ω)⌝ .
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Dynamical system

Claim
Coordinates of ϖω(R(G)) can be expressed as homogeneous polynomials in
coordinates of ϖω(G).

Example [Sierpiński recursion]

Set x ⌐= Z x

G
(ω) and x

′ ⌐= Z x

R(G)(ω).
(x1,x2,x3)′ = ⩀(y1,y2,y3)∈{0,1}3

(x1, y2, y3) ⋊ (y1,x2, y3) ⋊ (y1, y2,x3)
ωy1+y2+y3 .
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Rational dynamical system induced by R

Gk Gk

C2k C2k

R

Fω

ϖω ϖω

P2k⋊1 P2k⋊1⌝Fω

C

Z⌐ (ω)

⊍ coo
rd’s
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Chapter III:

Invariant Variety
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Invariant Variety

Lemma

LetM be the variety in P2k⋊1 defined by the following equations:

x ⋅ y = (x + y) ⋅ 0
for all x , y ∈ {0,1}k with x + y ∈ {0,1}k (i.e., with disjoint support).

Then dim(M) = k andM is (forward) invariant under ⌝Fω.

Note: M depends ONLY on k! and not on the recursion data (m,H,”)!
Can be proven directly using the formula for Fω.

Alternatively, one can use a probability interpretation ofM.
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Probability interpretation of the invariant varietyM
Let ϱ ⌐ L→ {0,1} be an assignment on L ⊂ L(G). Set

PG [ϖ ] ⌐= ⩀
ind. ε with ε⌜L=ϑ

ω#ε⌐1(1) ⌝ZG(ω) = ⩀
x∈{0,1}k , ε∼x on L

Z
x

G
(ω) ⌞ZG(ω)

— the probability that vertices of L get the assignment ϱ (for ω ∈ R+).

Claim

The varietyM ⊂ P2k⋊1 is defined by the following equations:

PG [ϖ ⋊ ϖ ′] = PG [ϖ ] ⋅ PG [ϖ ′]
for any assignments ϱ, ϱ ′ on disjoint subsets of L(G).
In other words: no correlation between di”erent labeled vertices!
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Dynamics on the invariant variety

Lemma
If R is non-degenerate, thenM is eventually periodic:

M M0 for some iterate t ≥ 1.id
⌝F t

ω

(eϖ)′
(0)′ = ω

1⋊dω ⋊ ⌞⌞
(e!(ϖ))
(0)

⌞
⌞
dω

,
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Dynamics near the invariant variety

Theorem
If R is expanding, thenM is transversally superattracting: ⌐C >, ω0 > 0 s.t.

⌜PG(ω ⌐ ω ⌐) − PG(ω)⌜ < ε < ε0 ⇒ ⌜PR(G)(ϑ ⌐ ϑ⌐) − PR(G)(ϑ)⌜ < C ⋊ ε2.
⌐ω, ω ⌐∶L(G)→ {0,1}, supp(ω)⋊supp(ω ⌐) = ∅ ⌐ε,ε⌐∶L(R(G))→ {0,1}, supp(ε)⋊supp(ε⌐) = ∅

Corollary

Suppose R is non-degenerate and expanding. Then

the spectrum of J ⌐= Jac⌜Fω
(ω0) at any ε0 ∈M0 is {0,1};

µJ(1) = dimJ(E1) = dim(M0);
µJ(0) = dimJt(E0) = 2k − dim(M0) − 1.
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Dynamics when starting with physical values (ω ∈ R+)
Theorem
Suppose R is non-degenerate and expanding, and let Gn = Rn(G0). Then
correlations between labeled vertices in Gn decay exponentially fast:

⌝PGn
(ϖ ⌐ ϖ ′) − PGn

(ϖ )⌝→ 0 as n →⋉
for any assignments ϱ, ϱ ′ on disjoint subsets of L(Gn) (and ω ∈ R+).

In other words:

For ω ∈ R+, if we start to iterate ⌝Fω with [ϖω(G0)] ∈ P2k for G0 ∈ Gk , then
⌞Fω

n([ϑω(G0)]) = [ϑω(Gn)] →M as n →⋉.
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Chapter IV:

And they all meet together. . .
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No Phase Transitions!

Theorem [H.-Peters]

Suppose R is a non-degenerate and expanding graph recursion operator, and let{Gn = Rn(G0)} be a recursive graph sequence.

Then zeros of ZGn
(ω),n ∈ N0, avoid a uniform neighborhood of R+.

Corollary

The limiting free energy per site is real analytic on all of R+, that is,
there are no phase transitions.
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Boundedness of Zeros!

Theorem [H.-Peters]

Suppose R is a non-degenerate and expanding graph recursion operator, and let{Gn = Rn(G0)} be a recursive graph sequence with G0 = (k + 1)–star.
Then zeros of ZGn

(ω),n ∈ N0, are uniformly bounded

(and thus avoid a cone around R+).
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Epilogue:

That is just the beginning!
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Further questions

Other models (e.g., Ising):
What is the precise class of amenable partition functions?

More general recursion:
Instead of identifying labeled vertices in the copies, the recursive operator R
connects them by inserting a graph #e for each e ∈ E(H).
Dynamical meaning of phase transitions:
bifurcations of the dynamical system?

Structure of the zero locus:
When do zeros equidistribute? what is the support of this measure?

THANK YOU for your attention!
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