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This talk: connections between
structural properties
What does a typical sample from the distribution look like?

dynamical properties
Can we sample efficiently using Markov chains?
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Random Cluster Model
graph G = (V,E) , q ≥ 1, β > 0 reals

Configuration set ΩG: edge subsets F ⊆ E

Weights: wG(F) = qc(F)(eβ − 1)|F| where c(F) =# components in (V,F)

Gibbs distribution: πG(F) = wG(F)/ZG

Partition function: ZG =
∑
F⊆E

wG(F)

RC configuration with c(F) = 6, |F| = 5

For integer q ≥ 2: Random Cluster←→ Potts
Potts-model configurations: σ : V → {1, . . . , q}.
Weight: factor of eβ for each monochromatic edge.
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Sampling using Glauber dynamics

Markov chain (Xt)t≥0 on edge subsets
Roughly: update whether e ∈ Xt conditioned on the status of E\{e}.

Start from arbitrary X0. To obtain Xt+1 from Xt:
1 Pick an edge e ∈ E u.a.r.

2 With probability
wG(Xt ∪ {e})

wG(Xt ∪ {e}) + wG(Xt \ {e})
, set Xt+1 = Xt ∪ {e}

Otherwise, Xt+1 = Xt \ {e}

Standard fact: Xt converges to πG

Tmix=# steps to get within TV distance ≤ 1/4 from πG

Question: fast vs slow mixing?
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Computational Complexity Results
Question: On input G = (V,E), can we sample from πG in poly(|V|) time?

[Jerrum-Sinclair ’93, Guo-Jerrum ’17]:
Poly-time algorithm when q = 2 and β > 0

(JS: even-subgraphs formulation; GJ: edge-flip dynamics for random cluster
(and SW))

[Goldberg-Jerrum ’10]:
Hard when q > 2 and β > 0

#BIS-hard

[Galanis-Stefankovic-Vigoda-Yang ’14]:
For int q ≥ 3, hard on ∆-regular graphs when β > βc := ln q−1

(q−2)1−2/∆−1

Can we understand behaviour of Glauber on the random regular graph?
Same phenomena believed to be relevant even for worst-case graphs
Well studied in the mean-field case (complete graph)
[Bollobás-Grimmett-Janson ’96], [Gore-Jerrum ’96], [Cooper-Dyer-Frieze-Rue ’06],

[Long-Nachmias-Ning-Peres ’14], [Cuff-Ding-Louidor-Lubetzky-Peres-Sly ’12],

[Galanis-Stefankovic-Vigoda ’17], [Blanca-Sinclair ’17], [Gheissari-Lubetzky-Peres ’18]
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Phases for RC on random regular graphs
Disordered vs Ordered Configurations: |F| ≤ η|E| vs |F| ≥ (1− η)|E|

A typical F ∼ πG is w.h.p. either ordered and disordered
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Phase transition on the random regular graph
[Helmuth-Jenssen-Perkins ’20] (q large)
Let η = η(∆) > 0 be a small constant. Define

Disordered phase Ωdis: {F ⊆ E with |F| ≤ η|E|}

Ordered phase Ωord: {F ⊆ E with |F| ≥ (1− η)|E|}

Let πdis = π(· | Ωdis), πord = π(· | Ωord)

Phase transition at βc = (1 + oq(1)) 2 log q
∆

if β < βc, |π − πdis| = e−Ω(n)

if β > βc, |π − πord| = e−Ω(n)

for β = βc: π(Ωdis), π(Ωord) = Ω(1), π(Ωdis ∪ Ωord) = 1− e−Ω(n).

[Galanis-Stefankovic-Vigoda-Yang ’14], [Bencs-Borbényi-Csikvári ’22]:
βc = ln q−1

(q−2)1−2/∆−1
for all q > 2

7



Phase transition on the random regular graph
[Helmuth-Jenssen-Perkins ’20] (q large)
Let η = η(∆) > 0 be a small constant. Define

Disordered phase Ωdis: {F ⊆ E with |F| ≤ η|E|}

Ordered phase Ωord: {F ⊆ E with |F| ≥ (1− η)|E|}

Let πdis = π(· | Ωdis), πord = π(· | Ωord)

Phase transition at βc = (1 + oq(1)) 2 log q
∆

if β < βc, |π − πdis| = e−Ω(n)

if β > βc, |π − πord| = e−Ω(n)

for β = βc: π(Ωdis), π(Ωord) = Ω(1), π(Ωdis ∪ Ωord) = 1− e−Ω(n).

[Galanis-Stefankovic-Vigoda-Yang ’14], [Bencs-Borbényi-Csikvári ’22]:
βc = ln q−1

(q−2)1−2/∆−1
for all q > 2

7



Phase transition on the random regular graph
[Helmuth-Jenssen-Perkins ’20] (q large)
Let η = η(∆) > 0 be a small constant. Define

Disordered phase Ωdis: {F ⊆ E with |F| ≤ η|E|}

Ordered phase Ωord: {F ⊆ E with |F| ≥ (1− η)|E|}

Let πdis = π(· | Ωdis), πord = π(· | Ωord)

Phase transition at βc = (1 + oq(1)) 2 log q
∆

if β < βc, |π − πdis| = e−Ω(n)

if β > βc, |π − πord| = e−Ω(n)

for β = βc: π(Ωdis), π(Ωord) = Ω(1), π(Ωdis ∪ Ωord) = 1− e−Ω(n).

[Galanis-Stefankovic-Vigoda-Yang ’14], [Bencs-Borbényi-Csikvári ’22]:
βc = ln q−1

(q−2)1−2/∆−1
for all q > 2

7



Glauber on the random regular graph
What about Glauber dynamics?

Two other thresholds βu < βc < βh that are relevant
connected to uniqueness threshold on infinite ∆-regular tree
[Haggström ’96]: showed non-uniqueness (on tree for q > 2) when
β ∈ [βu, βh]

◦ [Blanca-Gheissari ’20]: for β < βu, Tmix = Θ(n log n) for q ≥ 1

◦ [Blanca-Gheissari ’23]: for large β, Tmix = Θ(n log n) for q ≥ 1

◦ [Coja Oghlan-Galanis-Goldberg-Ravelomanana-Stefankovic-Vigoda ’21]

For integer q ≥ 3, metastability for β ∈ (βu, βh)

Exponential time for the dynamics to move from Ωord to Ωdis (and vice versa)
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Ordered/Disordered on Random Regular graphs

For a ∈ (0, 1): ΩG(a) = {F ⊆ E : |F| = a|E|}

random ∆-regular graph

ZG(a) =
∑

F∈ΩG(a)

wG(F)

ZG =
∑

a

ZG(a)

Which a achieve max
a

ZG(a)?
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Plots of Ψ(a) := 1
n log ZG(a) for integer q where ZG =

∑
a

enΨ(a)

β < βu

Ψ(a)

a

β = βu

Ψ(a)

a

Ψ(a)

a

β = βc

Ψ(a)

a

β ∈ (βc, βh)

Ψ(a)

a

β ∈ (βu, βc)

β ≥ βh

Ψ(a)

a

β < βu: disordered is the only local max
βu < β < βc both local max, disordered is the global max
βc < β < βh both local max, ordered is the global max
β > βh ordered is the only local max
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[Helmuth-Jenssen-Perkins ’20:]
Poly-time algorithm when q is large for all β
Based on cluster-expansion methods (expanding power series of partition fn)

Idea: Approx Zdis
G for β < β1, Zord

G for β > β0

Crucially: β0 < βc < β1

Question: Can we obtain a fast algorithm using Glauber?
◦ Perhaps we can avoid bottlenecks from well-chosen starting configurations

For β < βc, start from all-out (X0 = ∅)
For β > βc, start from all-in (X0 = E)

For β = βc, start from appropriate mixture of ∅ and E.

Intuition: Glauber should mix well within Ωord and Ωdis

[Gheissari-Sinclair ’21]:
Obtained analogous starting-state result for Ising (q = 2) but for β large
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Our Result

Let ∆ ≥ 5. ∃C = C(∆) s.t. for all q large enough and any β > 0,
w.h.p. over random ∆-regular graph:

1 For β < βc, Tmix of Glauber starting from all-out is O(n log n).

2 For β > βc, Tmix of Glauber starting from all-in is O(nC).

For integer q, the mixing time is O(n log n).

Notes:
◦ For β = βc, analogous Tmix bound from all-in/all-out mixture

◦ Proof builds on cluster expansion results of [Jenssen-Helmuth-Perkins ’20]
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Proof sketch (β > βc)
Xt: Glauber from all-in
X̂t: Glauber from stationarity, but restricted to ordered phase
Goal: For any edge e, |Pr(e ∈ Xt)− Pr(e ∈ X̂t))| ≤ 1/(4|E|)

Proof technique: Use local behaviour to extrapolate something global

◦ Can we show edges far away have little influence on e?

◦ Key: compare with a chain restricted to a small neighbourhood around e
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Proof sketch: edge marginals
Pick v ∈ V incident to e, r = Θ(log n)

(Xv
t ): restricted chain starting from all-in, ignoring updates outside Br(v)

(Xv
t ) converges to πB+

r (v) (RC on the wired ball)

|Pr(e ∈ Xv
t )− Pr(e ∈ X̂t)| ≤ (triangle inequality)

≤ |Pr(e ∈ Xv
t )− πB+

r (v)(e ∈ ·)|+ |πB+
r (v)(e ∈ ·)− Pr(e ∈ X̂t)|

For t poly, prob of ignoring updates is small, LHS conditioned on this is at most
|Pr(e ∈ Xv

t )− πB+
r (v)(e ∈ ·)|+ |πB+

r (v)(e ∈ ·)− πord(e ∈ ·)|+ e−Ω(n)

14



Proof sketch: edge marginals
Pick v ∈ V incident to e, r = Θ(log n)

(Xv
t ): restricted chain starting from all-in, ignoring updates outside Br(v)

(Xv
t ) converges to πB+

r (v) (RC on the wired ball)

|Pr(e ∈ Xv
t )− Pr(e ∈ X̂t)| ≤ (triangle inequality)

≤ |Pr(e ∈ Xv
t )− πB+

r (v)(e ∈ ·)|+ |πB+
r (v)(e ∈ ·)− Pr(e ∈ X̂t)|

For t poly, prob of ignoring updates is small, LHS conditioned on this is at most
|Pr(e ∈ Xv

t )− πB+
r (v)(e ∈ ·)|+ |πB+

r (v)(e ∈ ·)− πord(e ∈ ·)|+ e−Ω(n)

14



Proof sketch: edge marginals
Pick v ∈ V incident to e, r = Θ(log n)

(Xv
t ): restricted chain starting from all-in, ignoring updates outside Br(v)

(Xv
t ) converges to πB+

r (v) (RC on the wired ball)

|Pr(e ∈ Xv
t )− Pr(e ∈ X̂t)| ≤ (triangle inequality)

≤ |Pr(e ∈ Xv
t )− πB+

r (v)(e ∈ ·)|+ |πB+
r (v)(e ∈ ·)− Pr(e ∈ X̂t)|

For t poly, prob of ignoring updates is small, LHS conditioned on this is at most
|Pr(e ∈ Xv

t )− πB+
r (v)(e ∈ ·)|+ |πB+

r (v)(e ∈ ·)− πord(e ∈ ·)|+ e−Ω(n)

14


	Our Result
	Proof walk-through
	Disordered phase


