Sampling from the random-cluster model on random regular graphs

Leslie Ann Goldberg

Joint with:
Andreas Galanis, Paulina Smolarova
(their lovely slides!)

Combinatorial, Algorithmic and Probabilistic aspects of Partition Functions March 2025

This talk: connections between

- structural properties
 What does a typical sample from the distribution look like?
- dynamical properties
 Can we sample efficiently using Markov chains?

Random Cluster Model

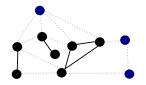
graph G = (V, E), $q \ge 1$, $\beta > 0$ reals

Configuration set Ω_G : edge subsets $F \subseteq E$

Weights: $w_G(F) = q^{c(F)}(e^{\beta} - 1)^{|F|}$ where c(F) = # components in (V, F)

Gibbs distribution: $\pi_G(F) = w_G(F)/Z_G$

Partition function: $Z_G = \sum_{F \subseteq E} w_G(F)$



RC configuration with c(F) = 6, |F| = 5

For integer $q \geq 2$: Random Cluster \longleftrightarrow Potts Potts-model configurations: $\sigma: V \to \{1, \dots, q\}$.

Weight: factor of e^{β} for each monochromatic edge.

Sampling using Glauber dynamics

Markov chain $(X_t)_{t\geq 0}$ on edge subsets

Roughly: update whether $e \in X_t$ conditioned on the status of $E \setminus \{e\}$.

.

Sampling using Glauber dynamics

Markov chain $(X_t)_{t\geq 0}$ on edge subsets

Roughly: update whether $e \in X_t$ conditioned on the status of $E \setminus \{e\}$.

Start from arbitrary X_0 . To obtain X_{t+1} from X_t :

- ① Pick an edge $e \in E$ u.a.r.
- $\text{ With probability } \frac{w_G(X_t \cup \{e\})}{w_G(X_t \cup \{e\}) + w_G(X_t \setminus \{e\})}, \text{ set } X_{t+1} = X_t \cup \{e\}$

Otherwise, $X_{t+1} = X_t \setminus \{e\}$

Sampling using Glauber dynamics

Markov chain $(X_t)_{t\geq 0}$ on edge subsets

Roughly: update whether $e \in X_t$ conditioned on the status of $E \setminus \{e\}$.

Start from arbitrary X_0 . To obtain X_{t+1} from X_t :

- Pick an edge $e \in E$ u.a.r.
- With probability $\frac{w_G(X_t \cup \{e\})}{w_G(X_t \cup \{e\}) + w_G(X_t \setminus \{e\})}$, set $X_{t+1} = X_t \cup \{e\}$ Otherwise, $X_{t+1} = X_t \setminus \{e\}$

Standard fact: X_t converges to π_G

 $T_{\rm mix}$ =# steps to get within TV distance $\leq 1/4$ from π_G

Question: fast vs slow mixing?

Computational Complexity Results

Question: On input G = (V, E), can we sample from π_G in poly(|V|) time?

[Jerrum-Sinclair '93, Guo-Jerrum '17]:

Poly-time algorithm when q=2 and $\beta>0$

(JS: even-subgraphs formulation; GJ: edge-flip dynamics for random cluster (and SW))

[Goldberg-Jerrum '10]:

Hard when q>2 and $\beta>0$

#BIS-hard

[Galanis-Stefankovic-Vigoda-Yang '14]:

For int $q \geq 3$, hard on Δ -regular graphs when $\beta > \beta_c := \ln \frac{q-1}{(q-2)^{1-2/\Delta}-1}$

Computational Complexity Results

Question: On input G = (V, E), can we sample from π_G in poly(|V|) time?

[Jerrum-Sinclair '93, Guo-Jerrum '17]:

Poly-time algorithm when q=2 and $\beta>0$

(JS: even-subgraphs formulation; GJ: edge-flip dynamics for random cluster (and SW))

[Goldberg-Jerrum '10]:

Hard when q>2 and $\beta>0$

#BIS-hard

[Galanis-Stefankovic-Vigoda-Yang '14]:

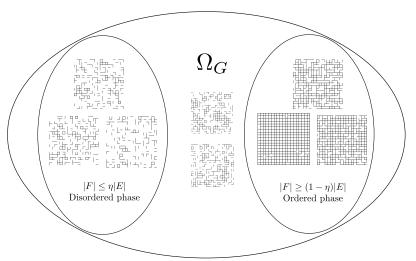
For int $q \geq 3$, hard on Δ -regular graphs when $\beta > \beta_c := \ln \frac{q-1}{(q-2)^{1-2/\Delta}-1}$

Can we understand behaviour of Glauber on the random regular graph?

- Same phenomena believed to be relevant even for worst-case graphs
- Well studied in the mean-field case (complete graph)
- [Bollobás-Grimmett-Janson '96], [Gore-Jerrum '96], [Cooper-Dyer-Frieze-Rue '06],
 [Long-Nachmias-Ning-Peres '14], [Cuff-Ding-Louidor-Lubetzky-Peres-Sly '12],
 [Galanis-Stefankovic-Vigoda '17], [Blanca-Sinclair '17], [Gheissari-Lubetzky-Peres '18]

Phases for RC on random regular graphs

Disordered vs Ordered Configurations: $|F| \le \eta |E|$ vs $|F| \ge (1 - \eta)|E|$



A typical $F \sim \pi_G$ is w.h.p. either *ordered* and *disordered*

Phase transition on the random regular graph

[Helmuth-Jenssen-Perkins '20] (q large)

Let $\eta = \eta(\Delta) > 0$ be a small constant. Define

- Disordered phase Ω^{dis} : $\{F \subseteq E \text{ with } |F| \leq \eta |E|\}$
- Ordered phase Ω^{ord} : $\{F \subseteq E \text{ with } |F| \geq (1-\eta)|E|\}$

Let
$$\pi^{\mathsf{dis}} = \pi(\cdot \mid \Omega^{\mathsf{dis}}), \, \pi^{\mathsf{ord}} = \pi(\cdot \mid \Omega^{\mathsf{ord}})$$

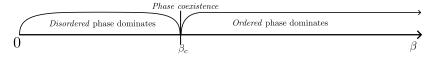
Phase transition on the random regular graph

[Helmuth-Jenssen-Perkins '20] (q large)

Let $\eta = \eta(\Delta) > 0$ be a small constant. Define

- Disordered phase Ω^{dis} : $\{F \subseteq E \text{ with } |F| \leq \eta |E|\}$
- Ordered phase Ω^{ord} : $\{F \subseteq E \text{ with } |F| \geq (1-\eta)|E|\}$

Let
$$\pi^{\mathsf{dis}} = \pi(\cdot \mid \Omega^{\mathsf{dis}}), \, \pi^{\mathsf{ord}} = \pi(\cdot \mid \Omega^{\mathsf{ord}})$$



Phase transition at $\beta_c = (1 + o_q(1))^{\frac{2 \log q}{\Delta}}$

- if $\beta < \beta_c$, $|\pi \pi^{\mathsf{dis}}| = \mathrm{e}^{-\Omega(n)}$
- if $\beta > \beta_c$, $|\pi \pi^{\text{ord}}| = e^{-\Omega(n)}$
- for $\beta = \beta_c$: $\pi(\Omega^{\mathsf{dis}}), \pi(\Omega^{\mathsf{ord}}) = \Omega(1), \pi(\Omega^{\mathsf{dis}} \cup \Omega^{\mathsf{ord}}) = 1 \mathrm{e}^{-\Omega(n)}$.

Phase transition on the random regular graph

[Helmuth-Jenssen-Perkins '20] (q large)

Let $\eta = \eta(\Delta) > 0$ be a small constant. Define

- Disordered phase Ω^{dis} : $\{F \subseteq E \text{ with } |F| \leq \eta |E|\}$
- Ordered phase Ω^{ord} : $\{F \subseteq E \text{ with } |F| \geq (1-\eta)|E|\}$

Let $\pi^{\mathsf{dis}} = \pi(\cdot \mid \Omega^{\mathsf{dis}}), \, \pi^{\mathsf{ord}} = \pi(\cdot \mid \Omega^{\mathsf{ord}})$

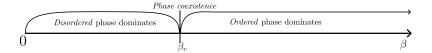
Phase transition at $\beta_c = (1 + o_q(1))^{\frac{2 \log q}{\Delta}}$

- if $\beta < \beta_c$, $|\pi \pi^{\mathsf{dis}}| = \mathrm{e}^{-\Omega(n)}$
- if $\beta > \beta_c$, $|\pi \pi^{\text{ord}}| = e^{-\Omega(n)}$
- for $\beta = \beta_c$: $\pi(\Omega^{\mathsf{dis}}), \pi(\Omega^{\mathsf{ord}}) = \Omega(1), \pi(\Omega^{\mathsf{dis}} \cup \Omega^{\mathsf{ord}}) = 1 \mathrm{e}^{-\Omega(n)}$.

[Galanis-Stefankovic-Vigoda-Yang '14], [Bencs-Borbényi-Csikvári '22]:

$$\beta_c = \ln \frac{q-1}{(q-2)^{1-2/\Delta}-1}$$
 for all $q > 2$

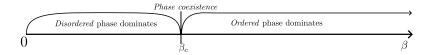
What about Glauber dynamics?



What about Glauber dynamics?

Two other thresholds $\beta_u < \beta_c < \beta_h$ that are relevant

- ullet connected to uniqueness threshold on infinite Δ -regular tree
- [Haggström '96]: showed non-uniqueness (on tree for q>2) when $\beta\in [\beta_u,\beta_h]$



What about Glauber dynamics?

Two other thresholds $\beta_u < \beta_c < \beta_h$ that are relevant

- connected to uniqueness threshold on infinite Δ-regular tree
- [Haggström '96]: showed non-uniqueness (on tree for q>2) when $\beta\in [\beta_u,\beta_h]$

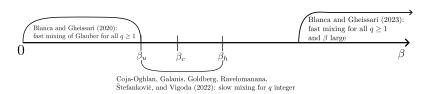
- ∘ [Blanca-Gheissari '20]: for $\beta < \beta_u$, $T_{\text{mix}} = \Theta(n \log n)$ for $q \ge 1$
- ∘ [Blanca-Gheissari '23]: for large β , $T_{\text{mix}} = \Theta(n \log n)$ for $q \ge 1$

.

What about Glauber dynamics?

Two other thresholds $\beta_u < \beta_c < \beta_h$ that are relevant

- connected to uniqueness threshold on infinite Δ-regular tree
- [Haggström '96]: showed non-uniqueness (on tree for q > 2) when $\beta \in [\beta_u, \beta_h]$



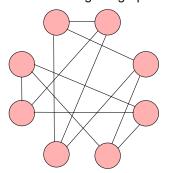
- ∘ [Blanca-Gheissari '20]: for $\beta < \beta_u$, $T_{\text{mix}} = \Theta(n \log n)$ for $q \ge 1$
- ∘ [Blanca-Gheissari '23]: for large β , $T_{\text{mix}} = \Theta(n \log n)$ for $q \ge 1$
- \circ [Coja Oghlan-Galanis-Goldberg-Ravelomanana-Stefankovic-Vigoda '21] For integer $q \geq 3$, metastability for $\beta \in (\beta_u, \beta_h)$

Exponential time for the dynamics to move from Ω^{ord} to Ω^{dis} (and vice versa)

Ordered/Disordered on Random Regular graphs

For
$$a \in (0,1)$$
: $\Omega_G(a) = \{ F \subseteq E : |F| = a|E| \}$

random Δ-regular graph



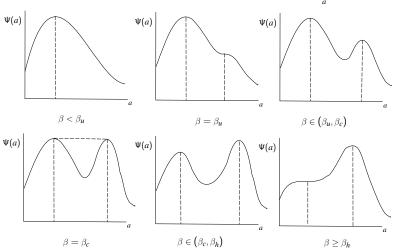
$$Z_G(a) = \sum_{F \in \Omega_G(a)} w_G(F)$$

$$Z_G = \sum_a Z_G(a)$$

Which a achieve $\max_{a} Z_G(a)$?

Plots of $\Psi(a):=rac{1}{n}\log Z_G(a)$ for integer q where $Z_G=\sum_a e^{n\Psi(a)}$

Plots of $\Psi(a):=rac{1}{n}\log Z_G(a)$ for integer q where $Z_G=\sum e^{n\Psi(a)}$



- $\beta < \beta_u$: disordered is the only local max
- $\beta_u < \beta < \beta_c$ both local max, disordered is the global max
- $\beta_c < \beta < \beta_h$ both local max, ordered is the global max
- $\beta > \beta_h$ ordered is the only local max

[Helmuth-Jenssen-Perkins '20:]

Poly-time algorithm when q is large for all β

Based on cluster-expansion methods (expanding power series of partition fn)

Idea: Approx Z_G^{dis} for $\beta < \beta_1, Z_G^{\text{ord}}$ for $\beta > \beta_0$

Crucially: $\beta_0 < \beta_c < \beta_1$

[Helmuth-Jenssen-Perkins '20:]

Poly-time algorithm when q is large for all β

Based on cluster-expansion methods (expanding power series of partition fn)

Idea: Approx Z_G^{dis} for $\beta < \beta_1$, Z_G^{ord} for $\beta > \beta_0$

Crucially: $\beta_0 < \beta_c < \beta_1$

Question: Can we obtain a fast algorithm using Glauber?

- o Perhaps we can avoid bottlenecks from well-chosen starting configurations
 - For $\beta < \beta_c$, start from all-out $(X_0 = \emptyset)$
 - For $\beta > \beta_c$, start from all-in $(X_0 = E)$
 - For $\beta = \beta_c$, start from appropriate mixture of \emptyset and E.

Intuition: Glauber should mix well within Ω^{ord} and Ω^{dis}

[Helmuth-Jenssen-Perkins '20:]

Poly-time algorithm when q is large for all β

Based on cluster-expansion methods (expanding power series of partition fn)

Idea: Approx Z_G^{dis} for $\beta < \beta_1, Z_G^{\text{ord}}$ for $\beta > \beta_0$

Crucially: $\beta_0 < \beta_c < \beta_1$

Question: Can we obtain a fast algorithm using Glauber?

- o Perhaps we can avoid bottlenecks from well-chosen starting configurations
 - For $\beta < \beta_c$, start from all-out $(X_0 = \emptyset)$
 - For $\beta > \beta_c$, start from all-in $(X_0 = E)$
 - For $\beta = \beta_c$, start from appropriate mixture of \emptyset and E.

Intuition: Glauber should mix well within Ω^{ord} and Ω^{dis}

[Gheissari-Sinclair '21]:

Obtained analogous starting-state result for Ising (q=2) but for β large

Our Result

Let $\Delta \geq 5$. $\exists C = C(\Delta)$ s.t. for all q large enough and any $\beta > 0$, w.h.p. over random Δ -regular graph:

- For $\beta < \beta_c$, T_{mix} of Glauber starting from all-out is $O(n \log n)$.
- ② For $\beta > \beta_c$, T_{mix} of Glauber starting from all-in is $O(n^C)$. For integer q, the mixing time is $O(n \log n)$.

Our Result

Let $\Delta \geq 5$. $\exists C = C(\Delta)$ s.t. for all q large enough and any $\beta > 0$, w.h.p. over random Δ -regular graph:

- For $\beta < \beta_c$, T_{mix} of Glauber starting from all-out is $O(n \log n)$.
- ② For $\beta > \beta_c$, T_{mix} of Glauber starting from all-in is $O(n^C)$. For integer q, the mixing time is $O(n \log n)$.

Notes:

- \circ For $\beta = \beta_c$, analogous T_{mix} bound from all-in/all-out mixture
- Proof builds on cluster expansion results of [Jenssen-Helmuth-Perkins '20]

1:

Proof sketch ($\beta > \beta_c$)

X_t: Glauber from all-in

 \hat{X}_t : Glauber from stationarity, but restricted to ordered phase Goal: For any edge e, $|\Pr(e \in X_t) - \Pr(e \in \hat{X}_t)| \le 1/(4|E|)$

1:

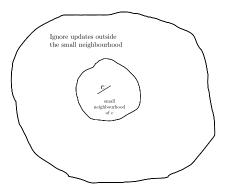
Proof sketch ($\beta > \beta_c$)

X_t: Glauber from all-in

 \hat{X}_t : Glauber from stationarity, but restricted to ordered phase Goal: For any edge e, $|\Pr(e \in X_t) - \Pr(e \in \hat{X}_t)| \le 1/(4|E|)$

Proof technique: Use local behaviour to extrapolate something global

- o Can we show edges far away have little influence on e?
- \circ Key: compare with a chain restricted to a *small neighbourhood* around e

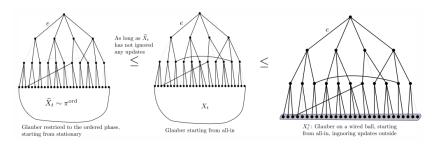


Proof sketch: edge marginals

Pick $v \in V$ incident to $e, r = \Theta(\log n)$

 (X_t^{ν}) : restricted chain starting from all-in, ignoring updates outside $B_r(\nu)$

 $(X_{\scriptscriptstyle t}^{\scriptscriptstyle
u})$ converges to $\pi_{B_r^+({\scriptscriptstyle
u})}$ (RC on the wired ball)

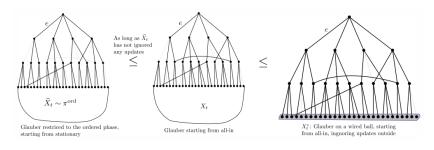


Proof sketch: edge marginals

Pick $v \in V$ incident to $e, r = \Theta(\log n)$

 (X_t^{ν}) : restricted chain starting from all-in, ignoring updates outside $B_r(\nu)$

 (X_t^{ν}) converges to $\pi_{B_r^+(\nu)}$ (RC on the wired ball)



$$|\Pr(e \in X_t^{\nu}) - \Pr(e \in \hat{X}_t)| \le$$
 (triangle inequality)
 $\le |\Pr(e \in X_t^{\nu}) - \pi_{B_r^+(\nu)}(e \in \cdot)| + |\pi_{B_r^+(\nu)}(e \in \cdot) - \Pr(e \in \hat{X}_t)|$

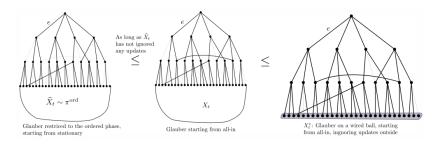
1.

Proof sketch: edge marginals

Pick $v \in V$ incident to $e, r = \Theta(\log n)$

 (X_t^{ν}) : restricted chain starting from all-in, ignoring updates outside $B_r(\nu)$

 (X_t^{ν}) converges to $\pi_{B_r^+(\nu)}$ (RC on the wired ball)



$$|\Pr(e \in X_t^v) - \Pr(e \in \hat{X}_t)| \le$$
 (triangle inequality)
 $\le |\Pr(e \in X_t^v) - \pi_{B_r^{\perp}(v)}(e \in \cdot)| + |\pi_{B_r^{\perp}(v)}(e \in \cdot) - \Pr(e \in \hat{X}_t)|$

For t poly, prob of ignoring updates is small, LHS conditioned on this is at most $|\Pr(e \in X_t^v) - \pi_{B_r^+(v)}(e \in \cdot)| + |\pi_{B_r^+(v)}(e \in \cdot) - \pi^{\operatorname{ord}}(e \in \cdot)| + \mathrm{e}^{-\Omega(n)}$