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This talk: connections between
@ structural properties
What does a typical sample from the distribution look like?

@ dynamical properties
Can we sample efficiently using Markov chains?



Random Cluster Model
graph G =(V,E),q > 1,5 > 0reals
Configuration set Q¢: edge subsets F C E
Weights: wo(F) = ¢°)(e” — 1)/ where ¢(F) =# components in (V, F)
Gibbs distribution: 7¢(F) = wa(F)/Zc

Partition function: Zg =) wg(F)
FCE

RC configuration with ¢(F) =6, |F| =5

For integer ¢ > 2: Random Cluster +— Potts
Potts-model configurations: o : V — {1,...,q}.

Weight: factor of ¢” for each monochromatic edge.



Sampling using Glauber dynamics

Markov chain (X;),>o on edge subsets
Roughly: update whether e € X, conditioned on the status of E\{e}.
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@ With probability ,set Xy =X, U {e}



Sampling using Glauber dynamics

Markov chain (X;),>o on edge subsets
Roughly: update whether e € X, conditioned on the status of E\{e}.

Start from arbitrary X,. To obtain X, from X;:
@ Pickanedge e € E u.a.r.
we(X; U {e})
wa(Xi U {e}) +wa(X:\ {e})

Otherwise, X;11 = X \ {e}

@ With probability ,set Xy =X, U {e}

Standard fact: X; converges to ng
Tmix=# steps to get within TV distance < 1/4 from ©g

Question: fast vs slow mixing?



Computational Complexity Results

Question: On input G = (V, E), can we sample from = in poly(|V|) time?

[Jerrum-Sinclair '93, Guo-Jerrum ’17]:
Poly-time algorithm when ¢ =2 and 5 > 0

(JS: even-subgraphs formulation; GJ: edge-flip dynamics for random cluster
(and SW))

[Goldberg-Jerrum ’10]:

Hard when g >2and 5 >0
#BIS-hard

[Galanis-Stefankovic-Vigoda-Yang ’14]:

Forint ¢ > 3, hard on A-regular graphs when 8 > (. :=In (q_z)?—;;/A_]
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[Galanis-Stefankovic-Vigoda-Yang ’14]:
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Can we understand behaviour of Glauber on the random regular graph?
@ Same phenomena believed to be relevant even for worst-case graphs
@ Well studied in the mean-field case (complete graph)

@ [Bollobas-Grimmett-Janson '96], [Gore-Jerrum '96], [Cooper-Dyer-Frieze-Rue '06],
[Long-Nachmias-Ning-Peres ’14], [Cuff-Ding-Louidor-Lubetzky-Peres-Sly '12],
[Galanis-Stefankovic-Vigoda '17], [Blanca-Sinclair '17], [Gheissari-Lubetzky-Peres '18]



Phases for RC on random regular graphs

Disordered vs Ordered Configurations: |F| < n|E| vs |F| > (1 — n)|E|

au)
T st
t FH
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[F| > (1 =n)E|
Ordered phase

Disordered phase

A typical F ~ 7g is w.h.p. either ordered and disordered



Phase transition on the random regular graph
[Helmuth-Jenssen-Perkins '20] (¢ large)

Let n = n(A) > 0 be a small constant. Define

@ Disordered phase Q%: {F C E with |F| < n|E|}

@ Ordered phase Q°%: {F C E with |F| > (1 —n)|E|}
Let 7918 — (- | Qdis), 70 — (- | Qord)

Phase coezistence

ﬁwrdered phase dominw Ordered phase dominates
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Phase transition at . = (1 + 0,(1)) >4

@ if B < B, |r — 7| = e~

Y |fﬂ > 61:1 |ﬂ_ _ ﬂ_OI’d| — G_Q(n)

=¢

@ for f = B2 m(2%°), 7(Q%7) = (1), 7(QT° U Q) = 1 — e .

[Galanis-Stefankovic-Vigoda-Yang '14], [Bencs-Borbényi-Csikvari '22]:

ﬁczlnwaﬂ%forallq>2



Glauber on the random regular graph

What about Glauber dynamics?
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What about Glauber dynamics?
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Glauber on the random regular graph

What about Glauber dynamics?

Two other thresholds 8, < 8. < 8, that are relevant
@ connected to uniqueness threshold on infinite A-regular tree
@ [Haggstrom ’96]: showed non-uniqueness (on tree for ¢ > 2) when

B € [ﬂm ﬂh]

Blanca and Gheissari (2020):
fast mixing of Glauber for all ¢ > 1

Blanca and Gheissari (2023):
fast mixing for all ¢ > 1
| | and § large N
| [ >
Bu Be Bn B
N/

Coja-Oghlan, Galanis, Goldberg, Ravelomanana,
Stefankovic, and Vigoda (2022): slow mixing for ¢ integer

o [Blanca-Gheissari 20]: for 8 < B, Tmix = ©O(nlogn) for g > 1
o [Blanca-Gheissari 23]: for large 3, Twix = ©(nlogn) for g > 1

o [Coja Oghlan-Galanis-Goldberg-Ravelomanana-Stefankovic-Vigoda '21]
For integer ¢ > 3, metastability for 8 € (8., i)

Exponential time for the dynamics to move from Q° to Q%€ (and vice versa)



Ordered/Disordered on Random Regular graphs

Forae (0,1): Qg(a) = {F C E : |F| = alE|}

random A-regular graph

Zg(a)= Y wa(F)

FeQg (a)

ZG = Z ZG(Cl)

Which a achieve maxZg(a)?



Plots of W(a) := ! log Z(a) for integer g where Zs = > &™)

a



Plots of W(a) := ! log Z(a) for integer g where Zs = > &™)

V(a) V(a)

a

B € (Be: Bn)
@ [ < p,: disordered is the only local max
@ [, < B < B. both local max, disordered is the global max
@ 3. < B < By both local max, ordered is the global max

@ 3 > (3, ordered is the only local max
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Poly-time algorithm when ¢ is large for all 5
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Crucially: 8y < 8. < B
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@ For 8 > j,, start from all-in (Xo = E)
@ For 3 = j3,, start from appropriate mixture of () and E.

Intuition: Glauber should mix well within ©°9 and Q9
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Poly-time algorithm when ¢ is large for all 5

Based on cluster-expansion methods (expanding power series of partition fn)
Idea: Approx Z& for 8 < B, Z&° for 5 > B

Crucially: 8y < 8. < B

Question: Can we obtain a fast algorithm using Glauber?

o Perhaps we can avoid bottlenecks from well-chosen starting configurations
@ For 8 < B, start from all-out (Xo = 0)
@ For 8 > j,, start from all-in (Xo = E)
@ For 3 = j3,, start from appropriate mixture of () and E.

Intuition: Glauber should mix well within ©°9 and Q9

[Gheissari-Sinclair 21]:
Obtained analogous starting-state result for Ising (¢ = 2) but for 3 large



Our Result

Let A > 5. 3C = C(A) s.t. for all ¢ large enough and any s > 0,
w.h.p. over random A-regular graph:
@ For 3 < B, Tmix of Glauber starting from all-out is O(n log r).
@ For 3 > 8., Tmix of Glauber starting from all-in is O(nc).
For integer ¢, the mixing time is O(n log n).



Our Result

Let A > 5. 3C = C(A) s.t. for all ¢ large enough and any s > 0,
w.h.p. over random A-regular graph:
@ For 3 < B, Tmix of Glauber starting from all-out is O(n log r).
@ For 3 > 8., Tmix of Glauber starting from all-in is O(nc).
For integer ¢, the mixing time is O(n log n).

Notes:
o For 8 = B, analogous Twix bound from all-in/all-out mixture

o Proof builds on cluster expansion results of [Jenssen-Helmuth-Perkins '20]



Proof sketch (8 > 5.)

X,: Glauber from all-in

X.: Glauber from stationarity, but restricted to ordered phase
Goal: For any edge ¢, | Pr(e € X;) — Pr(e € X,))| < 1/(4|E|)



Proof sketch (6 > S.)

X,: Glauber from all-in
X.: Glauber from stationarity, but restricted to ordered phase

Goal: For any edge e, | Pr(e € X;) — Pr(e € X,))| < 1/(4|E])
Proof technique: Use local behaviour to extrapolate something global
o Can we show edges far away have little influence on e?

o Key: compare with a chain restricted to a small neighbourhood around e

Ignore updates outside
the small neighbourhood




Proof sketch: edge marginals
Pick v € Vincident to e, r = ©(logn)
(X7): restricted chain starting from all-in, ignoring updates outside B.(v)
(X7') converges to m,+(,) (RC on the wired ball)

As long as ¥,
has not ignored
any updates
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X Glauber on a wired ball, starting
from all-in, ingnoring updates outside

Glauber restriced to the ordered phase

. . N Glauber starting from all-in
starting from stationary
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Proof sketch: edge marginals
Pick v € Vincident to e, r = ©(logn)

(X7): restricted chain starting from all-in, ignoring updates outside B.(v)
(X7') converges to m,+(,) (RC on the wired ball)

As long as £,
has not
any
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X Glauber on a wired ball, starting
from all-in, ingnoring updates outside

Glauber restriced to the ordered phase
starting from stationary

Glauber starting from all-in

|Pr(e € X}) — Pr(e € X,)| < (triangle inequality)
< |Pr(e € X) — m(y(e € )| + Imge (e € -) = Pr(e € X))

For 7 poly, prob of ignoring updates is small, LHS conditioned on this is at most
|Pr(e € X;) — mgi (€ € )| + Mgy (e € ) — Word(e € )| +e %
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