Random cluster model on locally tree-like regular graphs Free energy and typical landscape

Márton Borbényi^{1,2}

¹ Alfréd Rényi Institute of Mathematics

²Eötvös Loránd University

Workshop on the Combinatorial, Algorithmic and Probabilistic aspects of Partition Functions, 28.05.2025.

Ongoing work with Ferenc Bencs and Péter Csikvári.

Plan

- Definitions and setup
- Results
- Idea of the proof

Random cluster model

Let $p \in (0,1)$ and q > 0 be fixed. The probability that $A \subseteq E(G)$ is chosen is

$$\mathbb{P}[A] \propto p^{|A|} (1-p)^{|E(G)\backslash A|} q^{k(A)},$$

where k(A) denotes the number of connected components of (V, A).

(a)
$$\mathbb{P}[A_1] \propto p^4 (1-p)^4 q^2$$
 (b) $\mathbb{P}[A_2] \propto p^5 (1-p)^3 q$

(b)
$$\mathbb{P}[A_2] \propto p^5 (1-p)^3 q$$

Alternatively,

$$\mathbb{P}[A] \propto q^{k(A)} \Big(\underbrace{\frac{p}{1-p}}\Big)^{|A|}.$$

Random cluster model

Let $p \in (0,1)$ and q > 0 be fixed. The probability that $A \subseteq E(G)$ is chosen is

$$\mathbb{P}[A] \propto p^{|A|} (1-p)^{|E(G)\backslash A|} q^{k(A)},$$

where k(A) denotes the number of connected components of (V, A).

(a)
$$\mathbb{P}[A_1] \propto p^4 (1-p)^4 q^2$$
 (b) $\mathbb{P}[A_2] \propto p^5 (1-p)^3 q$

(b)
$$\mathbb{P}[A_2] \propto p^5 (1-p)^3 q$$

Alternatively,

$$\mathbb{P}[A] \propto q^{k(A)} \Big(\underbrace{\frac{p}{1-p}}\Big)^{|A|}.$$

For a graph G we denote the partition function of the random cluster model as

$$Z_G(q, w) = \sum_{A \subset E(G)} q^{k(A)} w^{|A|}.$$

Graphs

Let $(G_n)_n$ be an *essentially* large girth sequence of d-regular graphs.

Graphs

Let $(G_n)_n$ be an *essentially* large girth sequence of d-regular graphs.

Essentially large girth: for any fixed g>0

$$\frac{\#\{\text{cycles of length at most } g \text{ in } G_n\}}{v(G_n)} \to 0.$$

Examples:

Graphs

Let $(G_n)_n$ be an *essentially* large girth sequence of d-regular graphs.

Essentially large girth: for any fixed g > 0

$$\frac{\#\{\text{cycles of length at most } g \text{ in } G_n\}}{v(G_n)} \to 0.$$

Examples:

- G_n is a random d-regular graph on n vertices
- G_{n+1} is a random double lift of G_n where G_0 is any d-regular graph.

Main questions

Question

What is the free energy on an essentially large girth sequence of *d*-regular graphs:

$$\lim_{n \to \infty} \frac{1}{v(G_n)} \log Z_{G_n}(q, w)?$$

Main questions

Question

What is the free energy on an essentially large girth sequence of *d*-regular graphs:

$$\lim_{n \to \infty} \frac{1}{v(G_n)} \log Z_{G_n}(q, w)?$$

Question

What is local weak limit of this the random cluster model on G_n ? How does a typical configuration look like?

Previous results

- Dembo, Montanari / Montanari, Mosser, Sly: Ising model (q = 2)
- Dembo, Montanari, Sun: Potts model (positive integer q), except an interval (w_0, w_1)
- Dembo, Montanari, Sly and Sun:
 Potts model (positive integer q) and even d
- Helmuth, Jenssen and Perkins: random cluster model with large q and assuming some expansion property of $(G_n)_n$
- ullet Basak, Dembo and Sly: local structure of the Potts model (positive integer q) for all d

Answers

Theorem (BBCs '22)

If $(G_n)_n$ is an essentially large girth sequence of d-regular graphs, then the limit

$$\lim_{n \to \infty} \frac{1}{v(G_n)} \ln Z_{G_n}(q, w) = \ln \Phi_{d,q,w}$$

exists for $q \geq 2$ and $w \geq 0$. The quantity $\Phi_{d,q,w}$ can be computed as follows. Let

Answers

Theorem (BBCs '22)

If $(G_n)_n$ is an essentially large girth sequence of d-regular graphs, then the limit

$$\lim_{n \to \infty} \frac{1}{v(G_n)} \ln Z_{G_n}(q, w) = \ln \Phi_{d,q,w}$$

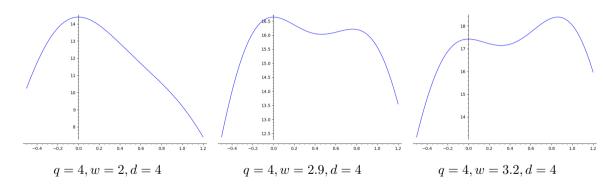
exists for $q \geq 2$ and $w \geq 0$. The quantity $\Phi_{d,q,w}$ can be computed as follows. Let

$$\Phi_{d,q,w}(t) := \left(\sqrt{1 + \frac{w}{q}}\cos(t) + \sqrt{\frac{(q-1)w}{q}}\sin(t)\right)^{a} + (q-1)\left(\sqrt{1 + \frac{w}{q}}\cos(t) - \sqrt{\frac{w}{q(q-1)}}\sin(t)\right)^{d},$$

then

$$\Phi_{d,q,w} := \max_{t \in [-\pi,\pi]} \Phi_{d,q,w}(t).$$

Examples



Phase transition

Theorem (BBCs '22)

Let q > 2 and

$$w_c := \frac{q-2}{(q-1)^{1-2/d} - 1} - 1.$$

If
$$0 \le w \le w_c$$
, then $\Phi_{d,q,w} = q \left(1 + \frac{w}{q}\right)^{d/2}$.

If
$$w > w_c$$
, then $\Phi_{d,q,w} > q \left(1 + \frac{w}{q}\right)^{d/2}$.

Phase transition

Theorem (BBCs '22)

Let q > 2 and

$$w_c := \frac{q-2}{(q-1)^{1-2/d} - 1} - 1.$$

If
$$0 \le w \le w_c$$
, then $\Phi_{d,q,w} = q \left(1 + \frac{w}{q}\right)^{d/2}$.
If $w > w_c$, then $\Phi_{d,q,w} > q \left(1 + \frac{w}{q}\right)^{d/2}$.

If
$$w>w_c$$
 , then $\Phi_{d,q,w}>q\left(1+rac{w}{q}
ight)^{d/2}$.

The model undergoes a first-order phase transition.

Local structure

Theorem (BBCs '25+)

Let q > 2.

- If $w < w_c$, then the "typical" local structure of random cluster model on G_n "looks like" the free boundary condition Gibbs measure on T_d .
- If $w > w_c$, then the "typical" local structure of random cluster model on G_n "looks like" the wired boundary condition Gibbs measure on T_d .

Local structure

Theorem (BBCs '25+)

Let q > 2.

- If $w < w_c$, then the "typical" local structure of random cluster model on G_n "looks like" the free boundary condition Gibbs measure on T_d .
- If $w > w_c$, then the "typical" local structure of random cluster model on G_n "looks like" the wired boundary condition Gibbs measure on T_d .

Definition

For a configuration σ on G_n let $S_r \sigma$ be the statistics of the r-balls.

Theorem

For all $\varepsilon > 0$ and r there exists c > 0 such that

$$\mathbb{P}_{\sigma_n} \left[d_{TV} \left(S_r \sigma_n, \mu|_{B(o,r)} \right) \ge \varepsilon \right] < e^{-cv(G_n)}.$$

Idea

• Relate the random cluster model to the Ising model.

Idea

- Relate the random cluster model to the Ising model.
- Ising model is well-understood.

Ising

Ising model

Let $\beta > 0, h \in \mathbb{R}$. For a $\sigma: V \to \{+, -\}$

$$\mathbb{P}[\sigma] = \frac{1}{Z_G(\beta, h)} e^{\beta \sum_{(u,v) \in E} \sigma_u \sigma_v + h \sum_{v \in V} \sigma_u},$$

where

$$Z_G(\beta, h) = \sum_{\sigma: V \to \{+, -\}} e^{\beta \sum_{(u,v) \in E} \sigma_u \sigma_v + h \sum_{v \in V} \sigma_u}.$$

Spin models

Spin models

Let $N \in M^{r \times r}(\mathbb{R}_{\geq 0})$ symmetric and $\nu \in \mathbb{R}^r_{\geq 0}$. Then for a $\sigma : V \to [r]$

Spin models

Spin models

Let $N\in M^{r imes r}(\mathbb{R}_{\geq 0})$ symmetric and $\nu\in\mathbb{R}^r_{>0}.$ Then for a $\sigma:V\to [r]$

$$\mathbb{P}[\sigma] = \frac{1}{Z_G(N, \nu)} \prod_{(u, v) \in E} N_{\sigma_u \sigma_v} \prod_{u \in V} \nu_u,$$

where

$$Z_G(N,\nu) = \sum_{\sigma:V \to [r]} \prod_{(u,v) \in E} N_{\sigma_u \sigma_v} \prod_{u \in V} \nu_u.$$

Spin models

Spin models

Let $N \in M^{r \times r}(\mathbb{R}_{\geq 0})$ symmetric and $\nu \in \mathbb{R}^r_{\geq 0}$. Then for a $\sigma: V \to [r]$

$$\mathbb{P}[\sigma] = \frac{1}{Z_G(N, \nu)} \prod_{(u, v) \in E} N_{\sigma_u \sigma_v} \prod_{u \in V} \nu_u,$$

where

$$Z_G(N,\nu) = \sum_{\sigma:V \to [r]} \prod_{(u,v) \in E} N_{\sigma_u \sigma_v} \prod_{u \in V} \nu_u.$$

Ising as a spin model

$$N_{\mathrm{Ising}} = \left(\begin{array}{cc} e^{\beta} & e^{-\beta} \\ e^{-\beta} & e^{\beta} \end{array} \right) \text{ and } \nu_{\mathrm{Ising}} = \left(\begin{array}{c} e^{h} \\ e^{-h} \end{array} \right).$$

The approximating spin model

2-spin approximation

Let

$$N = \left(\begin{array}{cc} 1+w & 1 \\ 1 & 1+rac{w}{q-1} \end{array} \right) \text{ and } \nu = \left(\begin{array}{c} 1 \\ q-1 \end{array} \right).$$

The approximating spin model

2-spin approximation

Let

$$N=\left(egin{array}{cc} 1+w & 1 \ 1 & 1+rac{w}{q-1} \end{array}
ight) ext{ and }
u=\left(egin{array}{c} 1 \ q-1 \end{array}
ight).$$

In the d-regular case

$$\left(\begin{array}{cc} 1+w & 1 \\ 1 & 1+\frac{w}{q-1} \end{array}\right), \left(\begin{array}{c} 1 \\ q-1 \end{array}\right) \sim \left(\begin{array}{cc} 1+w & a \\ a & \left(1+\frac{w}{q-1}\right)a^2 \end{array}\right), \left(\begin{array}{c} 1 \\ \frac{q-1}{a^d} \end{array}\right)$$

Colored random cluster

Coloring the random cluster model

- Sample from the random cluster,
- Olor each component with red and blue:

Colored random cluster

Coloring the random cluster model

- Sample from the random cluster,
- Color each component with red and blue:
- large (contains a cycle) components are red,
- ullet small components (trees) are red-blue with probability $\frac{1}{q} \frac{q-1}{q}$.

Colored random cluster

Coloring the random cluster model

- Sample from the random cluster,
- Color each component with red and blue:
- large (contains a cycle) components are red,
- ullet small components (trees) are red-blue with probability $\frac{1}{q} \frac{q-1}{q}$.

Weight

$$w_{cRC}(A, \sigma) = \prod_{C \in \mathcal{C}_{cyclic}(A)} w^{e(C)} \cdot q \prod_{C \in \mathcal{C}_{tree}(A)} w^{e(C)} \cdot 1 \prod_{C \in \mathcal{C}_{tree}(A)} w^{e(C)} \cdot (q - 1).$$

Remark

$$w_{RC}(A) = \sum_{\sigma} w_{cRC}(A, \sigma).$$

Percolated Ising model

$$N=\left(egin{array}{cc} 1+w & 1 \ 1 & 1+rac{w}{q-1} \end{array}
ight) ext{ and }
u=\left(egin{array}{c} 1 \ q-1 \end{array}
ight).$$

Percolating the 2-spin model

Sample from the 2-spin model; percolate:

Percolated Ising model

$$N = \left(\begin{array}{cc} 1+w & 1 \\ 1 & 1+\frac{w}{q-1} \end{array} \right) \text{ and } \nu = \left(\begin{array}{c} \mathbf{1} \\ q-1 \end{array} \right).$$

Percolating the 2-spin model

- Sample from the 2-spin model; percolate:
- blue-red edge: remove;
- **1** red-red edge: keep with probability $\frac{w}{1+w}$,
- blue-blue edge: keep with probability $\frac{\frac{w}{q-1}}{1+\frac{w}{a-1}}=\frac{w}{w+q-1}$ (active edges).

$$w_{pIs}(A,\sigma) = \prod_{C \in \mathcal{C}(A)} w^{e(C)} \cdot 1^{v(C)} \prod_{C \in \mathcal{C}(A)} \left(\frac{w}{q-1}\right)^{e(C)} \cdot (q-1)^{v(C)}$$

C	$\sigma(C)$	in percolated Ising	in colored RC
tree	+	$w^{e(C)}$	$w^{e(C)}$

C	$\sigma(C)$	in percolated Ising	in colored RC
tree	+	$w^{e(C)}$	$w^{e(C)}$
tree	-	$w^{e(C)}(q-1)$	$w^{e(C)}(q-1)$

C	$\sigma(C)$	in percolated Ising	in colored RC
tree	+	$w^{e(C)}$	$w^{e(C)}$
tree	-	$w^{e(C)}(q-1)$	$w^{e(C)}(q-1)$
cyclic	+	$w^{e(C)}$	$w^{e(C)}$ q

Weights					
	C	$\sigma(C)$	in percolated Ising	in colored RC	
	tree	+	$w^{e(C)}$	$w^{e(C)}$	
	tree	-	$w^{e(C)}(q-1)$	$w^{e(C)}(q-1)$	
	cyclic	+	$w^{e(C)}$	$w^{e(C)}$ q	
	cyclic	-	$w^{e(C)}(q-1)^{v(C)-e(C)}$	0	

C	$\sigma(C)$	in percolated Ising	in colored RC
tree	+	$w^{e(C)}$	$w^{e(C)}$
tree	-	$w^{e(C)}(q-1)$	$w^{e(C)}(q-1)$
cyclic	+	$w^{e(C)}$	$w^{e(C)}$ q

Weights

C	$\sigma(C)$	in percolated Ising	in colored RC
tree	+	$w^{e(C)}$	$w^{e(C)}$
tree	-	$w^{e(C)}(q-1)$	$w^{e(C)}(q-1)$
cyclic	+	$w^{e(C)}$	$w^{e(C)}$ q

Large girth

The number of cyclic components is sublinear $\left(\leq \frac{v(G_n)}{g}\right)$.

Weights

C	$\sigma(C)$	in percolated Ising	in colored RC
tree	+	$w^{e(C)}$	$w^{e(C)}$
tree	-	$w^{e(C)}(q-1)$	$w^{e(C)}(q-1)$
cyclic	+	$w^{e(C)}$	$w^{e(C)}$ q

Large girth

The number of cyclic components is sublinear $\left(\leq \frac{v(G_n)}{g}\right)$.

Subexponentially close wieghts

$$w_{pIs}(A, \sigma) \le w_{cRC}(A, \sigma) \le w_{pIs}(A, \sigma) \cdot q^{\frac{v(G_n)}{g}}$$

Corollary

Theorem (BBCs '22)

$$\frac{1}{v(G_n)} \ln Z_{Is}(q, w) - \frac{1}{v(G_n)} \ln Z_{RC}(q, w) \to 0.$$

Corollary

Theorem (BBCs '22)

$$\frac{1}{v(G_n)} \ln Z_{Is}(q, w) - \frac{1}{v(G_n)} \ln Z_{RC}(q, w) \to 0.$$

Theorem (BBCs '25+)

$$\mathbb{P}_{pIS}(A_n) < e^{-cv(G_n)} \Longrightarrow \mathbb{P}_{cRC}(A_n) < e^{-c'v(G_n)}.$$

Lemma

For all $\varepsilon > 0$ and r there exists c > 0 such that

$$\mathbb{P}_{\sigma_n \sim pIS} \left[d_{TV} \left(S_r \sigma_n, \mu|_{B(o,r)} \right) \ge \varepsilon \right] < e^{-cv(G_n)}.$$

THANKS FOR YOUR ATTENTION!