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Graph limits: combination of combinatorics, analysis and probability theory

@ motivation: extremal graph theory, spectral theory, random graphs

@ dense graph limits: homomorphism densities, which can be seen as

@ sparse graph limits: local neighborhood statistics

@ action convergence: intermediate density, with applications to random ma-
trices

@ entropy inequalities: based on counting — connections to
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Graph limits

Question: given a growing sequence graphs, is there a
representing structural properties of this sequence?

@ when do we say that two graphs are similar to each other? especially if the
number of vertices if different?

@ when do we say that a sequence of finite graphs converges?

@ for a convergent sequence, is there a limit object?

@ if we find the limit object and understand it with analytic tools, how can we
translate the results back to the finite graphs?



Limits of dense graphs

FI1GURE 1.8. A randomly grown uniform attachment graph with
100 nodes, and a (continuous) function approximating it

Source: Laszlé Lovasz: Large networks and graph limits, 2012, AMS.
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Source: Laszl6 Lovasz: Large networks and graph limits, 2012, AMS.



Limits of dense graphs

FIGURE 1.7. A half-graph, its pixel picture, and the limit function

Source: Laszl6 Lovasz: Large networks and graph limits, 2012, AMS.
Similarities:
@ edge density: the probability that two randomly chosen vertices are connected

@ triangle density: the probability that three randomly chosen vertices form a
triangle



Similarity based on counting

Definition
Let H, G be two graphs. A map f : V(H) — V(G) is called a graph homomor-
phism if

o fxf:V(H)x V(H)— V(G) x V(G) takes edges to edges;

@ that is, for (u,v) € E(H) we have (f(u), f(v)) € E(G).

Let hom(H, G) denote the set of homomorphisms from H to G and let

__|hom(H, G)|
t(H, G) := 7\V(G)|IV(H)I

We have that t(H, G) is the probability that random map from V(H) to V(G) is
a graph homomorphism. In particular 0 < t(H, G) < 1.

if H is an edge, t(H, G) is the edge density. If H is a triangle,
t(H, G) is the probability that three randomly chosen vertices form a triangle.



Limit objects in dense graph limit theory
Definition

A graphon is a measurable function W : [0,1]> — [0,1] such that W(x,y) =
W(y, x) holds for every x,y € [0,1].

If H is a finite graph with V(H) = {1,2,..., n}, then we define

t(H, W) = / H W (xi, x;) dxydxa . .. dx,.
X1,X2,...,Xn€[0,1] (i.J)EE(H)



Limit objects in dense graph limit theory
Definition

A graphon is a measurable function W : [0,1]> — [0, 1] such that W(x,y) =
W(y, x) holds for every x,y € [0,1].

If H is a finite graph with V(H) = {1,2,..., n}, then we define

t(H, W) = / H W (xi, x;) dxydxa . .. dx,.
X1,X2,...,Xn€[0,1] (i ))EE(H)

Theorem (Lovasz—Szegedy, 2006)

If G, is convergent in the sense that t(H, G,) is convergent for every simple finite
graph H, then there is a graphon W such that lim,_, ., t(H, G,) = t(H, W) holds
for every finite graph H.

Example: growing Erdés—Rényi graphs with edge probability p converge to the
constant p graphon (each pair of vertices is connected independently with
probability p).



Graph homomorphism partition function

Definition
Let H = (V, E) be a finite simple graph, and A € C*** be a symmetric matrix.
The graph homomorphism partition function is defined by

Pu(A)= > I Aswow:

$:V—{1,2,... .k} {u,v}€E



Graph homomorphism partition function

Definition
Let H = (V, E) be a finite simple graph, and A € C*** be a symmetric matrix.
The graph homomorphism partition function is defined by

Pu(A)= > I Aswow:

¢:V—{1,2,....k} {u,v}€E
If Ais the adjacency matrix of a graph G, then this is the same as the number of
homomorphisms from H to G.

With other choices of A, we can get the number of colorings, number of
independent sets etc.

Barvinok, A., & Soberén, P. (2017). Computing the partition function for graph
homomorphisms. Combinatorica, 37, 633-650.
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Similarity of bounded degree graphs

When do we say that two graphs are similar to each other?

a path of length 1000 and a path of length 1000000: they have different size,
but the structure is similar
a path of length 1000 and a cycle of length 1000:

they are not similar globally, but they are similar locally: the small neighbor-
hood of a randomly chosen vertex is the same

a 1000 x 1000 grid and a 10000 x 10000 grid:

they are not similar globally, but they are similar locally: the small neighbor-
hood of a randomly chosen vertex is the same

a random 3-regular graph on 1000 vertices and a random 3-regular graph on
10000 vertices: they are similar locally: the small neighborhood of a randomly
chosen vertex is a tree with high probability
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Random regular graphs

G = G(n,d): a uniformly chosen, simple d-regular graph on n vertices. Several
structural properties can be understood using graph limit theory.

Local properties: the graph locally looks like a tree = the local limit will be the
infinite d-regular tree, if d is fixed and n — cc.



Random regular graphs
Fix d > 3.

G = G(n,d): a uniformly chosen, simple d-regular graph on n vertices.

Local properties: G(n,d) does not contain many small cycles with high
probability — it looks like a tree.

G(n, d) tends to the infinite d-regular tree T, in the Benjamini-Schramm
(local) sense:

given n and r, the probability that the r-neighborhood of a uniformly chosen
random vertex is a tree, tends to 1 as n — oo.



Limits of colored regular graphs

S: finite set of colors

(Hn): a sequence of finite d-regular graphs with colored vertices (with the
number of vertices tending to infinity but all degrees bounded by A)

F(A,r,S): the set of connected rooted vertex-colored graphs with diameter at
most 2r

T4: infinite d-regular tree with root o
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Limits of colored regular graphs

S: finite set of colors

(Hn): a sequence of finite d-regular graphs with colored vertices (with the
number of vertices tending to infinity but all degrees bounded by A)

F(A,r,S): the set of connected rooted vertex-colored graphs with diameter at
most 2r

T4: infinite d-regular tree with root o

Invariant random process on Ty: to each vertex v € V/(Ty), we assign a
random variable X, with values in S such that the joint distribution (X,) is
invariant under all automorphisms of the tree.

We say that (H,) converges locally to (X,),c7, if for every r and

F e F(A,r,S) the following holds. The probability that the colored rooted
r-neighborhood of a uniformly chosen vertex v of H, is isomorphic to F converges
to the probability that the colored r-neighborhood of the root o of Ty is
isomorphic to F.



Limits of colored regular graphs

r = 2, F as below with the black vertex as the root:

The probability that the 2-neighborhood of a randomly chosen vertex is
isomorphic to F should be convergent.



Limits of colored regular graphs

2-neighborhood of the root in an invariant random process:

Xy, X1, Xa, ... are random colors from S.



Typical processes

T4: infinite d-regular tree, S: finite set

Definition (Typical process)
We say that an S-valued invariant random process (X,),cv(t,) is typical if there
exists a subsequence of the positive integers (ny) with the following property.

If, for each k independently, Gy is a random d-regular graph on ny vertices, then,
with probability 1, there exists a sequence of colorings fy : V(Gx) — S such that
(Gk, fx) converges to (X,),ev(t,) locally as k — oo.

An R-valued invariant random process is typical if it can be approximated by finite-
valued typical processes in distribution.



Typical processes

T4: infinite d-regular tree, S: finite set

Definition (Typical process)

We say that an S-valued invariant random process (X,),cv(t,) is typical if there
exists a subsequence of the positive integers (ny) with the following property.

If, for each k independently, Gy is a random d-regular graph on ny vertices, then,
with probability 1, there exists a sequence of colorings fy : V(Gx) — S such that
(Gk, fx) converges to (X,),ev(t,) locally as k — oo.

An R-valued invariant random process is typical if it can be approximated by finite-
valued typical processes in distribution.

Open question: do we need subsequence in this definition?

Example for not typical process: alternating black and white with the color of the
root chosen uniformly at random (Bollobas, 1984: a random d-regular graph is
far from being bipartite with high probability, its independence ratio is smaller
than 1/2).



Entropy inequalities

Let U C V(Ty4) be a finite connected subgraph of the infinite tree. Then the
entropy of the joint distribution X = (X, ),cu will be denoted by h(U):

h(U) = — SB(X = F) - log P(X = F),

Example: h(B2(O)) = h(Xo, X1, Xo, X11, X102, . .. ,X32), where BQ(O) is the
2-neighborhood of the root.
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Entropy inequalities

Let U C V(Ty4) be a finite connected subgraph of the infinite tree. Then the
entropy of the joint distribution X = (X, ),cu in an invariant process will be
denoted by h(U):

h(U) ==Y P(X =F)-logP(X = F).
F

Proposition
For every typical process the following hold:
(i) ;
5h(1) = (d = 1)h(-).
(ii)

H(Bi()) > Sh(D),

where By (*) is the 1-neighborhood of a vertex (a vertex and its d neighbors).

For factor of i.i.d. processes: Bowen (2008); the f-invariant is nonnegative; see
also Rahman-Virag (2014).



Entropy inequalities

Proposition

For every typical process the following holds:

d
H(BL() > Sh(1)
where By (+) is the 1-neighborhood of a vertex (a vertex and its d neighbors).

Idea of the proof (similar to Bollobas's argument for the independence ratio):

@ take the configuration model of the random regular graph;

@ count the number of colorings that are close to the distribution of X,
on Bi(-);

@ this is more than the total number of graphs.



Testing a matrix with a vector

Let M € R"*" be a matrix. We consider every row vector v € R" as an
"experiment" that we can perform on M.

@ Let w:=vM.
@ Joint empirical distribution: let y, p denote the distribution of (v(7), w(/)),
where i is picked uniformly at random from {1,2,..., n}.

We say that p, v is an observation of M.
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Testing a matrix with a vector

Let M € R"*" be a matrix. We consider every row vector v € R" as an
"experiment" that we can perform on M.

@ Let w:=vM.
@ Joint empirical distribution: let y, p denote the distribution of (v(7), w(/)),
where i is picked uniformly at random from {1,2,..., n}.

We say that p, v is an observation of M.

Nice fact: p, v is a probability distribution on R?, independently of the size of
M.

Nice fact 2: v is an eigenvector with eigenvalue X if and only if p, p is
supported on the line y = Ax.

Very rough idea: Two matrices N € R"*" and M € R™*™ are considered to be
similar if the set of all possible observations on them are similar.
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of (v,vA,vA2, ... vA*~1) with an appropriate v with high probability if A is
chosen randomly



Extensions to random matrices (work in progress)

Typical probability measure: can be approximated with the empirical distribution
of (v,vA,vA2, ... vA*~1) with an appropriate v with high probability if A is
chosen randomly

Theorem (B-Szegedy, 2025+)

Let v be a typical probability measure on Ck with finite covariance matrix and
|[vM)|, < oo for some p > 1. Let ¢ > 0 and Ny be the standard normal distribution
on C¥ (for k > 1). Then we have

D(v x o Ng) + / log go(lf_)_qk_ldvgi?.’k > Do), (1)
(Ck—l

where %) = v« o N and ¢©(?) denotes the density of the Gaussian distribution
having the same mean and covariance structure as (%),
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