Graph limit theory and partition functions

Ágnes Backhausz ELTE Eötvös Loránd University and HUN-REN Alfréd Rényi Institute of Mathematics Budapest, Hungary Joint work with Balázs Szegedy

27 March 2025, Workshop on Partition Functions, CWI, Amsterdam

Overview

Graph limits: combination of combinatorics, analysis and probability theory

• motivation: extremal graph theory, spectral theory, random graphs

Overview

Graph limits: combination of combinatorics, analysis and probability theory

- motivation: extremal graph theory, spectral theory, random graphs
- dense graph limits: homomorphism densities, which can be seen as partition functions
- sparse graph limits: local neighborhood statistics

Overview

Graph limits: combination of combinatorics, analysis and probability theory

- motivation: extremal graph theory, spectral theory, random graphs
- dense graph limits: homomorphism densities, which can be seen as partition functions
- sparse graph limits: local neighborhood statistics
- action convergence: intermediate density, with applications to random matrices
- entropy inequalities: based on counting connections to partition functions

Overview of literature

László Lovász: Large networks and graph limits, 2012, AMS.

Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T., & Vesztergombi, K. (2008). Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing. Advances in Mathematics, 219(6), 1801-1851.

Barvinok, A., & Soberón, P. (2017). Computing the **partition function for graph homomorphisms**. Combinatorica, 37, 633-650.

Regts, G. (2018). Zero-free regions of partition functions with applications to algorithms and graph limits. Combinatorica, 38(4), 987-1015. (edge-coloring models, continuity of the partition function with respect to the Benjamini–Schramm convergence)

Overview of literature

László Lovász: Large networks and graph limits, 2012, AMS.

Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T., & Vesztergombi, K. (2008). Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing. Advances in Mathematics, 219(6), 1801-1851.

Barvinok, A., & Soberón, P. (2017). Computing the **partition function for graph homomorphisms**. Combinatorica, 37, 633-650.

Regts, G. (2018). Zero-free regions of partition functions with applications to algorithms and graph limits. Combinatorica, 38(4), 987-1015. (edge-coloring models, continuity of the partition function with respect to the Benjamini–Schramm convergence)

Ágnes Backhausz, Balázs Szegedy, Action convergence of operators and graphs. Canadian Journal of Mathematics. 74 (1), 72-121 (2022).

Question: given a growing sequence graphs, is there a **continuous limit object** representing structural properties of this sequence?

• when do we say that two graphs are similar to each other? especially if the number of vertices if different?

Question: given a growing sequence graphs, is there a **continuous limit object** representing structural properties of this sequence?

- when do we say that two graphs are similar to each other? especially if the number of vertices if different?
- when do we say that a sequence of finite graphs converges?

Question: given a growing sequence graphs, is there a **continuous limit object** representing structural properties of this sequence?

- when do we say that two graphs are similar to each other? especially if the number of vertices if different?
- when do we say that a sequence of finite graphs converges?
- for a convergent sequence, is there a limit object?

Question: given a growing sequence graphs, is there a **continuous limit object** representing structural properties of this sequence?

- when do we say that two graphs are similar to each other? especially if the number of vertices if different?
- when do we say that a sequence of finite graphs converges?
- for a convergent sequence, is there a limit object?
- if we find the limit object and understand it with analytic tools, how can we translate the results back to the finite graphs?

Limits of dense graphs

FIGURE 1.8. A randomly grown uniform attachment graph with 100 nodes, and a (continuous) function approximating it

Source: László Lovász: Large networks and graph limits, 2012, AMS.

Limits of dense graphs

Figure 1.7. A half-graph, its pixel picture, and the limit function ${\bf r}$

Source: László Lovász: Large networks and graph limits, 2012, AMS.

Limits of dense graphs

Figure 1.7. A half-graph, its pixel picture, and the limit function ${\cal P}$

Source: László Lovász: Large networks and graph limits, 2012, AMS.

Similarities:

- edge density: the probability that two randomly chosen vertices are connected
- triangle density: the probability that three randomly chosen vertices form a triangle

Similarity based on counting

Definition

Let H, G be two graphs. A map $f: V(H) \rightarrow V(G)$ is called a **graph homomorphism** if

- $f \times f : V(H) \times V(H) \rightarrow V(G) \times V(G)$ takes edges to edges;
- that is, for $(u, v) \in E(H)$ we have $(f(u), f(v)) \in E(G)$.

Let hom(H, G) denote the set of homomorphisms from H to G and let

$$t(H,G) := \frac{|\operatorname{hom}(H,G)|}{|V(G)|^{|V(H)|}}$$

We have that t(H, G) is the probability that random map from V(H) to V(G) is a graph homomorphism. In particular $0 \le t(H, G) \le 1$.

Examples: if H is an edge, t(H, G) is the edge density. If H is a triangle, t(H, G) is the probability that three randomly chosen vertices form a triangle.

Limit objects in dense graph limit theory

Definition

A **graphon** is a measurable function $W:[0,1]^2 \to [0,1]$ such that W(x,y)=W(y,x) holds for every $x,y\in [0,1]$.

If H is a finite graph with $V(H) = \{1, 2, ..., n\}$, then we define

$$t(H,W) := \int_{x_1,x_2,...,x_n \in [0,1]} \prod_{(i,j) \in E(H)} W(x_i,x_j) \ dx_1 dx_2 ... dx_n.$$

Limit objects in dense graph limit theory

Definition

A **graphon** is a measurable function $W:[0,1]^2 \to [0,1]$ such that W(x,y)=W(y,x) holds for every $x,y\in [0,1]$.

If H is a finite graph with $V(H) = \{1, 2, ..., n\}$, then we define

$$t(H,W) := \int_{x_1,x_2,...,x_n \in [0,1]} \prod_{(i,j) \in E(H)} W(x_i,x_j) \ dx_1 dx_2 ... dx_n.$$

Theorem (Lovász-Szegedy, 2006)

If G_n is convergent in the sense that $t(H,G_n)$ is convergent for every simple finite graph H, then there is a graphon W such that $\lim_{n\to\infty} t(H,G_n)=t(H,W)$ holds for every finite graph H.

Example: growing Erdős–Rényi graphs with edge probability p converge to the constant p graphon (each pair of vertices is connected independently with probability p).

Graph homomorphism partition function

Definition

Let H=(V,E) be a finite simple graph, and $A\in\mathbb{C}^{k\times k}$ be a symmetric matrix. The **graph homomorphism partition function** is defined by

$$P_H(A) = \sum_{\phi: V \to \{1,2,\ldots,k\}} \prod_{\{u,v\} \in E} A_{\Phi(u)\Phi(v)}.$$

Graph homomorphism partition function

Definition

Let H=(V,E) be a finite simple graph, and $A\in\mathbb{C}^{k\times k}$ be a symmetric matrix. The **graph homomorphism partition function** is defined by

$$P_H(A) = \sum_{\phi: V \to \{1, 2, \dots, k\}} \prod_{\{u, v\} \in E} A_{\Phi(u)\Phi(v)}.$$

If A is the adjacency matrix of a graph G, then this is the same as the number of homomorphisms from H to G.

With other choices of A, we can get the number of colorings, number of independent sets etc.

Barvinok, A., & Soberón, P. (2017). Computing the partition function for graph homomorphisms. Combinatorica, 37, 633-650.

- a path of length 1000 and a path of length 1000000: they have different size, but the structure is similar
- a path of length 1000 and a cycle of length 1000:

- a path of length 1000 and a path of length 1000000: they have different size, but the structure is similar
- a path of length 1000 and a cycle of length 1000: they are not similar globally, but they are similar locally: the small neighborhood of a randomly chosen vertex is the same

- a path of length 1000 and a path of length 1000000: they have different size, but the structure is similar
- a path of length 1000 and a cycle of length 1000: they are not similar globally, but they are similar locally: the small neighborhood of a randomly chosen vertex is the same
- ullet a 1000 imes 1000 grid and a 10000 imes 10000 grid:

- a path of length 1000 and a path of length 1000000: they have different size, but the structure is similar
- a path of length 1000 and a cycle of length 1000: they are not similar globally, but they are similar locally: the small neighborhood of a randomly chosen vertex is the same
- a 1000×1000 grid and a 10000×10000 grid: they are not similar globally, but they are similar **locally**: the small neighborhood of a randomly chosen vertex is the same

- a path of length 1000 and a path of length 1000000: they have different size, but the structure is similar
- a path of length 1000 and a cycle of length 1000: they are not similar globally, but they are similar locally: the small neighborhood of a randomly chosen vertex is the same
- a 1000×1000 grid and a 10000×10000 grid: they are not similar globally, but they are similar **locally**: the small neighborhood of a randomly chosen vertex is the same
- a random 3-regular graph on 1000 vertices and a random 3-regular graph on 10000 vertices: they are similar **locally**: the small neighborhood of a randomly chosen vertex is a tree with high probability

G = G(n, d): a uniformly chosen, simple d-regular graph on n vertices.

G = G(n, d): a uniformly chosen, simple d-regular graph on n vertices.

Local properties: the graph locally looks like a tree \Rightarrow the **local limit** will be the infinite *d*-regular tree, if *d* is fixed and $n \to \infty$.

G = G(n, d): a uniformly chosen, simple d-regular graph on n vertices. Several structural properties can be understood using graph limit theory.

Local properties: the graph locally looks like a tree \Rightarrow the **local limit** will be the infinite *d*-regular tree, if *d* is fixed and $n \to \infty$.

Fix $d \geq 3$.

G = G(n, d): a uniformly chosen, simple d-regular graph on n vertices.

Local properties: G(n, d) does not contain many small cycles with high probability – it looks like a tree.

G(n, d) tends to the **infinite** d-regular tree T_d in the Benjamini–Schramm (local) sense:

given n and r, the probability that the r-neighborhood of a uniformly chosen random vertex is a tree, tends to 1 as $n \to \infty$.

S: finite set of colors

 (H_n) : a sequence of finite *d*-regular graphs with colored vertices (with the number of vertices tending to infinity but all degrees bounded by Δ)

 $\mathcal{F}(\Delta, r, S)$: the set of connected rooted vertex-colored graphs with diameter at most 2r

 T_d : infinite d-regular tree with root o

S: finite set of colors

 (H_n) : a sequence of finite *d*-regular graphs with colored vertices (with the number of vertices tending to infinity but all degrees bounded by Δ)

 $\mathcal{F}(\Delta, r, S)$: the set of connected rooted vertex-colored graphs with diameter at most 2r

 T_d : infinite d-regular tree with root o

Invariant random process on T_d : to each vertex $v \in V(T_d)$, we assign a random variable X_v with values in S such that the joint distribution (X_v) is invariant under all automorphisms of the tree.

S: finite set of colors

 (H_n) : a sequence of finite *d*-regular graphs with colored vertices (with the number of vertices tending to infinity but all degrees bounded by Δ)

 $\mathcal{F}(\Delta, r, S)$: the set of connected rooted vertex-colored graphs with diameter at most 2r

 T_d : infinite d-regular tree with root o

Invariant random process on T_d : to each vertex $v \in V(T_d)$, we assign a random variable X_v with values in S such that the joint distribution (X_v) is invariant under all automorphisms of the tree.

We say that (H_n) converges locally to $(X_v)_{v\in T_d}$ if for every r and $F\in \mathcal{F}(\Delta,r,S)$ the following holds. The probability that the colored rooted r-neighborhood of a uniformly chosen vertex v of H_n is isomorphic to F converges to the probability that the colored r-neighborhood of the root o of T_d is isomorphic to F.

r = 2, F as below with the black vertex as the root:

The probability that the 2-neighborhood of a randomly chosen vertex is isomorphic to F should be convergent.

2-neighborhood of the root in an invariant random process:

 X_o, X_1, X_2, \dots are random colors from S.

Typical processes

 T_d : infinite d-regular tree, S: finite set

Definition (Typical process)

We say that an S-valued invariant random process $(X_v)_{v \in V(T_d)}$ is **typical** if there exists a subsequence of the positive integers (n_k) with the following property.

If, for each k independently, G_k is a random d-regular graph on n_k vertices, then, with probability 1, there exists a sequence of colorings $f_k:V(G_k)\to S$ such that (G_k,f_k) converges to $(X_v)_{v\in V(T_d)}$ locally as $k\to\infty$.

An \mathbb{R} -valued invariant random process is typical if it can be approximated by finite-valued typical processes in distribution.

Typical processes

 T_d : infinite d-regular tree, S: finite set

Definition (Typical process)

We say that an S-valued invariant random process $(X_v)_{v \in V(T_d)}$ is **typical** if there exists a subsequence of the positive integers (n_k) with the following property.

If, for each k independently, G_k is a random d-regular graph on n_k vertices, then, with probability 1, there exists a sequence of colorings $f_k:V(G_k)\to S$ such that (G_k,f_k) converges to $(X_v)_{v\in V(T_d)}$ locally as $k\to\infty$.

An \mathbb{R} -valued invariant random process is typical if it can be approximated by finite-valued typical processes in distribution.

Open question: do we need subsequence in this definition?

Example for not typical process: alternating black and white with the color of the root chosen uniformly at random (Bollobás, 1984: a random d-regular graph is far from being bipartite with high probability, its independence ratio is smaller than 1/2).

Let $U \subset V(T_d)$ be a finite connected subgraph of the infinite tree. Then the entropy of the joint distribution $\underline{X} = (X_v)_{v \in U}$ will be denoted by h(U):

$$h(U) = -\sum_{F} \mathbb{P}(\underline{X} = F) \cdot \log \mathbb{P}(\underline{X} = F).$$

Example: $h(B_2(o)) = h(X_o, X_1, X_2, X_{11}, X_{12}, \dots, X_{32})$, where $B_2(o)$ is the 2-neighborhood of the root.

Let $U \subset V(T_d)$ be a finite connected subgraph of the infinite tree. Then the entropy of the joint distribution $\underline{X} = (X_v)_{v \in U}$ in an *invariant process* will be denoted by h(U):

$$h(U) = -\sum_{F} \mathbb{P}(\underline{X} = F) \cdot \log \mathbb{P}(\underline{X} = F).$$

Let $U \subset V(T_d)$ be a finite connected subgraph of the infinite tree. Then the entropy of the joint distribution $\underline{X} = (X_v)_{v \in U}$ in an *invariant process* will be denoted by h(U):

$$h(U) = -\sum_{F} \mathbb{P}(\underline{X} = F) \cdot \log \mathbb{P}(\underline{X} = F).$$

Proposition

For every typical process the following hold:

(i)

$$\frac{d}{2}h(1) \geq (d-1)h(\bullet).$$

(ii)

$$h(B_1(\cdot)) \geq \frac{d}{2}h(1),$$

where $B_1(\cdot)$ is the 1-neighborhood of a vertex (a vertex and its d neighbors).

For factor of i.i.d. processes: Bowen (2008); the f-invariant is nonnegative; see also Rahman–Virág (2014).

Proposition

For every typical process the following holds:

$$h(B_1(\cdot)) \geq \frac{d}{2}h(1),$$

where $B_1(\cdot)$ is the 1-neighborhood of a vertex (a vertex and its d neighbors).

Idea of the proof (similar to Bollobás's argument for the independence ratio):

- take the configuration model of the random regular graph;
- count the number of colorings that are close to the distribution of X_{ν} on $B_1(\cdot)$;
- this is more than the total number of graphs.

Let $M \in \mathbb{R}^{n \times n}$ be a matrix. We consider every row vector $v \in \mathbb{R}^n$ as an "experiment" that we can perform on M.

- ① Let w := vM.
- **2 Joint empirical distribution:** let $\mu_{v,M}$ denote the distribution of (v(i), w(i)), where i is picked uniformly at random from $\{1, 2, \ldots, n\}$.
 - We say that $\mu_{v,M}$ is an **observation** of M.

Let $M \in \mathbb{R}^{n \times n}$ be a matrix. We consider every row vector $v \in \mathbb{R}^n$ as an "experiment" that we can perform on M.

- ① Let w := vM.
- **2 Joint empirical distribution:** let $\mu_{v,M}$ denote the distribution of (v(i), w(i)), where i is picked uniformly at random from $\{1, 2, \ldots, n\}$. We say that $\mu_{v,M}$ is an **observation** of M.

Nice fact: $\mu_{v,M}$ is a probability distribution on \mathbb{R}^2 , independently of the size of M.

Let $M \in \mathbb{R}^{n \times n}$ be a matrix. We consider every row vector $v \in \mathbb{R}^n$ as an "experiment" that we can perform on M.

- ① Let w := vM.
- **2 Joint empirical distribution:** let $\mu_{v,M}$ denote the distribution of (v(i), w(i)), where i is picked uniformly at random from $\{1, 2, \ldots, n\}$.

We say that $\mu_{v,M}$ is an **observation** of M.

Nice fact: $\mu_{v,M}$ is a probability distribution on \mathbb{R}^2 , independently of the size of M.

Nice fact 2: v is an eigenvector with eigenvalue λ if and only if $\mu_{v,M}$ is supported on the line $y = \lambda x$.

Let $M \in \mathbb{R}^{n \times n}$ be a matrix. We consider every row vector $v \in \mathbb{R}^n$ as an "experiment" that we can perform on M.

- ① Let w := vM.
- **2 Joint empirical distribution:** let $\mu_{v,M}$ denote the distribution of (v(i), w(i)), where i is picked uniformly at random from $\{1, 2, \ldots, n\}$. We say that $\mu_{v,M}$ is an **observation** of M.

Nice fact: $\mu_{v,M}$ is a probability distribution on \mathbb{R}^2 , independently of the size of M.

Nice fact 2: v is an eigenvector with eigenvalue λ if and only if $\mu_{v,M}$ is supported on the line $y = \lambda x$.

Very rough idea: Two matrices $N \in \mathbb{R}^{n \times n}$ and $M \in \mathbb{R}^{m \times m}$ are considered to be similar if the set of all possible observations on them are similar.

Extensions to random matrices (work in progress)

Typical probability measure: can be approximated with the empirical distribution of $(v, vA, vA^2, \dots, vA^{k-1})$ with an appropriate v with high probability if A is chosen randomly

Extensions to random matrices (work in progress)

Typical probability measure: can be approximated with the empirical distribution of $(v, vA, vA^2, \dots, vA^{k-1})$ with an appropriate v with high probability if A is chosen randomly

Theorem (B-Szegedy, 2025+)

Let ν be a typical probability measure on \mathbb{C}^k with finite covariance matrix and $\|\nu^{[1]}\|_p < \infty$ for some p>1. Let $\sigma>0$ and N_k be the standard normal distribution on \mathbb{C}^k (for $k\geq 1$). Then we have

$$\mathbb{D}(\nu \star \sigma N_k) + \int_{\mathbb{C}^{k-1}} \log \varphi_{1,\dots,k-1}^{(\sigma)} d\nu_{2,\dots,k}^{(\sigma)} \ge \mathbb{D}(\sigma N_1), \tag{1}$$

where $\nu^{(\sigma)} = \nu \star \sigma N_k$ and $\varphi^{(\sigma)}$ denotes the density of the Gaussian distribution having the same mean and covariance structure as $\nu^{(\sigma)}$.