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Overview

Graph limits: combination of combinatorics, analysis and probability theory

motivation: extremal graph theory, spectral theory, random graphs

dense graph limits: homomorphism densities, which can be seen as partition
functions

sparse graph limits: local neighborhood statistics

action convergence: intermediate density, with applications to random ma-
trices

entropy inequalities: based on counting – connections to partition func-
tions
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Graph limits

Question: given a growing sequence graphs, is there a continuous limit object
representing structural properties of this sequence?

when do we say that two graphs are similar to each other? especially if the
number of vertices if different?

when do we say that a sequence of finite graphs converges?

for a convergent sequence, is there a limit object?

if we find the limit object and understand it with analytic tools, how can we
translate the results back to the finite graphs?



Graph limits

Question: given a growing sequence graphs, is there a continuous limit object
representing structural properties of this sequence?

when do we say that two graphs are similar to each other? especially if the
number of vertices if different?

when do we say that a sequence of finite graphs converges?

for a convergent sequence, is there a limit object?

if we find the limit object and understand it with analytic tools, how can we
translate the results back to the finite graphs?



Graph limits

Question: given a growing sequence graphs, is there a continuous limit object
representing structural properties of this sequence?

when do we say that two graphs are similar to each other? especially if the
number of vertices if different?

when do we say that a sequence of finite graphs converges?

for a convergent sequence, is there a limit object?

if we find the limit object and understand it with analytic tools, how can we
translate the results back to the finite graphs?



Graph limits

Question: given a growing sequence graphs, is there a continuous limit object
representing structural properties of this sequence?

when do we say that two graphs are similar to each other? especially if the
number of vertices if different?

when do we say that a sequence of finite graphs converges?

for a convergent sequence, is there a limit object?

if we find the limit object and understand it with analytic tools, how can we
translate the results back to the finite graphs?



Limits of dense graphs

Source: László Lovász: Large networks and graph limits, 2012, AMS.
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edge density: the probability that two randomly chosen vertices are connected

triangle density: the probability that three randomly chosen vertices form a
triangle
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Similarity based on counting

Definition
Let H,G be two graphs. A map f : V (H) → V (G ) is called a graph homomor-
phism if

f × f : V (H)× V (H) → V (G )× V (G ) takes edges to edges;

that is, for (u, v) ∈ E (H) we have (f (u), f (v)) ∈ E (G ).

Let hom(H,G ) denote the set of homomorphisms from H to G and let

t(H,G ) :=
| hom(H,G )|
|V (G )||V (H)|

We have that t(H,G ) is the probability that random map from V (H) to V (G ) is
a graph homomorphism. In particular 0 ≤ t(H,G ) ≤ 1.

Examples: if H is an edge, t(H,G ) is the edge density. If H is a triangle,
t(H,G ) is the probability that three randomly chosen vertices form a triangle.



Limit objects in dense graph limit theory
Definition
A graphon is a measurable function W : [0, 1]2 → [0, 1] such that W (x , y) =
W (y , x) holds for every x , y ∈ [0, 1].

If H is a finite graph with V (H) = {1, 2, . . . , n}, then we define

t(H,W ) :=

∫
x1,x2,...,xn∈[0,1]

∏
(i,j)∈E(H)

W (xi , xj) dx1dx2 . . . dxn.

Theorem (Lovász–Szegedy, 2006)
If Gn is convergent in the sense that t(H,Gn) is convergent for every simple finite
graph H, then there is a graphon W such that limn→∞ t(H,Gn) = t(H,W ) holds
for every finite graph H.

Example: growing Erdős–Rényi graphs with edge probability p converge to the
constant p graphon (each pair of vertices is connected independently with
probability p).
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Graph homomorphism partition function

Definition
Let H = (V ,E ) be a finite simple graph, and A ∈ Ck×k be a symmetric matrix.
The graph homomorphism partition function is defined by

PH(A) =
∑

ϕ:V→{1,2,...,k}

∏
{u,v}∈E

AΦ(u)Φ(v).

If A is the adjacency matrix of a graph G , then this is the same as the number of
homomorphisms from H to G .

With other choices of A, we can get the number of colorings, number of
independent sets etc.

Barvinok, A., & Soberón, P. (2017). Computing the partition function for graph
homomorphisms. Combinatorica, 37, 633-650.
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Similarity of bounded degree graphs

When do we say that two graphs are similar to each other?

a path of length 1000 and a path of length 1000000: they have different size,
but the structure is similar

a path of length 1000 and a cycle of length 1000:

they are not similar globally, but they are similar locally: the small neighbor-
hood of a randomly chosen vertex is the same

a 1000 × 1000 grid and a 10000 × 10000 grid:
they are not similar globally, but they are similar locally: the small neighbor-
hood of a randomly chosen vertex is the same

a random 3-regular graph on 1000 vertices and a random 3-regular graph on
10000 vertices: they are similar locally: the small neighborhood of a randomly
chosen vertex is a tree with high probability
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Random regular graphs

G = G (n, d): a uniformly chosen, simple d-regular graph on n vertices.

Local properties: the graph locally looks like a tree ⇒ the local limit will be the
infinite d-regular tree, if d is fixed and n → ∞.
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Random regular graphs

G = G (n, d): a uniformly chosen, simple d-regular graph on n vertices. Several
structural properties can be understood using graph limit theory.

Local properties: the graph locally looks like a tree ⇒ the local limit will be the
infinite d-regular tree, if d is fixed and n → ∞.



Random regular graphs
Fix d ≥ 3.

G = G (n, d): a uniformly chosen, simple d-regular graph on n vertices.

Local properties: G (n, d) does not contain many small cycles with high
probability – it looks like a tree.

G (n, d) tends to the infinite d-regular tree Td in the Benjamini–Schramm
(local) sense:

given n and r , the probability that the r -neighborhood of a uniformly chosen
random vertex is a tree, tends to 1 as n → ∞.



Limits of colored regular graphs

S : finite set of colors

(Hn): a sequence of finite d-regular graphs with colored vertices (with the
number of vertices tending to infinity but all degrees bounded by ∆)

F(∆, r ,S): the set of connected rooted vertex-colored graphs with diameter at
most 2r

Td : infinite d-regular tree with root o

Invariant random process on Td : to each vertex v ∈ V (Td), we assign a
random variable Xv with values in S such that the joint distribution (Xv ) is
invariant under all automorphisms of the tree.

We say that (Hn) converges locally to (Xv )v∈Td
if for every r and

F ∈ F(∆, r ,S) the following holds. The probability that the colored rooted
r -neighborhood of a uniformly chosen vertex v of Hn is isomorphic to F converges
to the probability that the colored r -neighborhood of the root o of Td is
isomorphic to F .
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Limits of colored regular graphs

r = 2, F as below with the black vertex as the root:

o

The probability that the 2-neighborhood of a randomly chosen vertex is
isomorphic to F should be convergent.



Limits of colored regular graphs

2-neighborhood of the root in an invariant random process:

Xo X1

X11

X12

X2

X3

Xo ,X1,X2, . . . are random colors from S .



Typical processes
Td : infinite d-regular tree, S : finite set

Definition (Typical process)
We say that an S-valued invariant random process (Xv )v∈V (Td ) is typical if there
exists a subsequence of the positive integers (nk) with the following property.

If, for each k independently, Gk is a random d-regular graph on nk vertices, then,
with probability 1, there exists a sequence of colorings fk : V (Gk) → S such that
(Gk , fk) converges to (Xv )v∈V (Td ) locally as k → ∞.

An R-valued invariant random process is typical if it can be approximated by finite-
valued typical processes in distribution.

Open question: do we need subsequence in this definition?

Example for not typical process: alternating black and white with the color of the
root chosen uniformly at random (Bollobás, 1984: a random d-regular graph is
far from being bipartite with high probability, its independence ratio is smaller
than 1/2).
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Entropy inequalities
Let U ⊂ V (Td) be a finite connected subgraph of the infinite tree. Then the
entropy of the joint distribution X = (Xv )v∈U will be denoted by h(U):

h(U) = −
∑
F

P(X = F ) · logP(X = F ).

Xo X1

X11

X12

X2

X3

X31

X32

X22

X21

Example: h(B2(o)) = h(Xo ,X1,X2,X11,X12, . . . ,X32), where B2(o) is the
2-neighborhood of the root.



Entropy inequalities
Let U ⊂ V (Td) be a finite connected subgraph of the infinite tree. Then the
entropy of the joint distribution X = (Xv )v∈U in an invariant process will be
denoted by h(U):

h(U) = −
∑
F

P(X = F ) · logP(X = F ).

Proposition
For every typical process the following hold:
(i)

d

2
h( qq) ≥ (d − 1)h( q).

(ii)

h(B1( q)) ≥ d

2
h( qq),

where B1( q) is the 1-neighborhood of a vertex (a vertex and its d neighbors).

For factor of i.i.d. processes: Bowen (2008); the f -invariant is nonnegative; see
also Rahman–Virág (2014).



Entropy inequalities
Let U ⊂ V (Td) be a finite connected subgraph of the infinite tree. Then the
entropy of the joint distribution X = (Xv )v∈U in an invariant process will be
denoted by h(U):

h(U) = −
∑
F

P(X = F ) · logP(X = F ).

Proposition
For every typical process the following hold:
(i)

d

2
h( qq) ≥ (d − 1)h( q).

(ii)

h(B1( q)) ≥ d

2
h( qq),

where B1( q) is the 1-neighborhood of a vertex (a vertex and its d neighbors).

For factor of i.i.d. processes: Bowen (2008); the f -invariant is nonnegative; see
also Rahman–Virág (2014).



Entropy inequalities

Proposition
For every typical process the following holds:

h(B1( q)) ≥ d

2
h( qq),

where B1( q) is the 1-neighborhood of a vertex (a vertex and its d neighbors).

Idea of the proof (similar to Bollobás’s argument for the independence ratio):

take the configuration model of the random regular graph;

count the number of colorings that are close to the distribution of Xv

on B1(·);

this is more than the total number of graphs.



Testing a matrix with a vector

Let M ∈ Rn×n be a matrix. We consider every row vector v ∈ Rn as an
"experiment" that we can perform on M.

1 Let w := vM.

2 Joint empirical distribution: let µv ,M denote the distribution of (v(i),w(i)),
where i is picked uniformly at random from {1, 2, . . . , n}.
We say that µv ,M is an observation of M.

Nice fact: µv ,M is a probability distribution on R2, independently of the size of
M.

Nice fact 2: v is an eigenvector with eigenvalue λ if and only if µv ,M is
supported on the line y = λx .

Very rough idea: Two matrices N ∈ Rn×n and M ∈ Rm×m are considered to be
similar if the set of all possible observations on them are similar.
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Extensions to random matrices (work in progress)

Typical probability measure: can be approximated with the empirical distribution
of (v , vA, vA2, . . . , vAk−1) with an appropriate v with high probability if A is
chosen randomly

Theorem (B-Szegedy, 2025+)

Let ν be a typical probability measure on Ck with finite covariance matrix and
∥ν[1]∥p < ∞ for some p > 1. Let σ > 0 and Nk be the standard normal distribution
on Ck (for k ≥ 1). Then we have

D(ν ⋆ σNk) +

∫
Ck−1

logφ
(σ)
1,...,k−1dν

(σ)
2,...,k ≥ D(σN1), (1)

where ν(σ) = ν ⋆ σNk and φ(σ) denotes the density of the Gaussian distribution
having the same mean and covariance structure as ν(σ).
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